An implementation of the self-starter based on the method of undetermined coefficients is described and tested. For many problems, this parabolic equation technique for solving short range propagation problems provides an efficiency gain of an order of magnitude or more over the finite difference solution. With this forward model, it is possible to solve geoacoustic inverse problems in seconds on the current generation of desktop computers. The approach can be implemented for the inverse problem so that efficiency is essentially independent of the depth of the water column.
REFERENCES
1.
F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics, New York, 1994), pp. 203–341.
2.
Ibid., pp. 343–412.
3.
M. D.
Collins
, “A self-starter for the parabolic equation method
,” J. Acoust. Soc. Am.
92
, 2069
–2074
(1992
).4.
M. D.
Collins
, W. A.
Kuperman
, and H.
Schmidt
, “Nonlinear inversion for ocean-bottom properties
,” J. Acoust. Soc. Am.
92
, 2770
–2783
(1992
).5.
R. J.
Cederberg
and M. D.
Collins
, “Application of an improved self-starter to geoacoustic inversion
,” IEEE J. Ocean Eng.
22
, 102
–109
(1997
).6.
F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics, New York, 1994), pp. 272–275.
7.
W. A.
Kuperman
, M. B.
Porter
, J. S.
Perkins
, and R. B.
Evans
, “Rapid computation of acoustic fields in three-dimensional ocean environments
,” J. Acoust. Soc. Am.
89
, 125
–133
(1991
).8.
M. D.
Collins
and L.
Fishman
, “Efficient navigation of parameter landscapes
,” J. Acoust. Soc. Am.
98
, 1637
–1644
(1995
).9.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1984), pp. 384–393.
10.
M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), pp. 89–116.
This content is only available via PDF.
© 1999 Acoustical Society of America.
1999
Acoustical Society of America
You do not currently have access to this content.