Dolphins demonstrate an adaptive control over echolocation click production, but little is known of the manner or degree with which control is exercised. Echolocation clicks (N∼30 000) were collected from an Atlantic bottlenose dolphin (Tursiops truncatus) performing object discrimination tasks in order to investigate differential click production. Seven categories of clicks were identified using the spectral conformation and relative position of −3 and −10 dB peaks. A counterpropagation network utilizing 16 inputs, 50 hidden units, and 8 output units was trained to classify clicks using the same spectral variables. The network classified novel clicks with 92% success. Additional echolocation clicks (N>24 000) from two other dolphins were submitted to the network for classification. Classified echolocation clicks were analyzed for animal specific differences, changes in predominant click type within click trains, and task-related specificity. Differences in animal and task performance may influence click type and click train length.

1.
Au
,
W. W. L.
(
1994
). “
Comparison of sonar discrimination: Dolphin and an artificial neural network
,”
J. Acoust. Soc. Am.
95
,
2728
2735
.
2.
Au
,
W. W. L.
,
Andersen
,
L. N.
,
Rasmussen
,
A. R.
,
Roitblat
,
H. L.
, and
Nachtigall
,
P. E.
(
1995a
). “
Neural network modeling of a dolphin’s sonar discrimination capabilities
,”
J. Acoust. Soc. Am.
98
,
43
50
.
3.
Au
,
W. W. L.
,
Carder
,
C. A.
,
Penner
,
R. H.
, and
Scronce
,
B. L.
(
1985
). “
Demonstration of adaptation in beluga whale echolocation signals
,”
J. Acoust. Soc. Am.
77
,
726
730
.
4.
Au
,
W. W. L.
,
Pawloski
,
J. L.
,
Nachtigall
,
P. E.
,
Bonz
,
M.
, and
Gisiner
,
R. C.
(
1995b
). “
Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens)
,”
J. Acoust. Soc. Am.
98
,
51
59
.
5.
Brill
,
R. L.
, and
Harder
,
P. J.
(
1991
). “
The effects of attenuating the returning echolocation signals at the lower jaw of a dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
89
,
2851
2857
.
6.
Brill, R. L., Moore, P. W. B., Dankiewicz, L. A., and Ketten, D. R. (submitted). “Dolphin (Tursiops truncatus) auditory thresholds measured with jawphones,” J. Acoust. Soc. Am.
7.
Brill
,
R. L.
,
Pawloski
,
J. L.
,
Helweg
,
D. A.
,
Au
,
W. W.
, and
Moore
,
P. W. B.
(
1992
). “
Target detection, shape discrimination, and signal characteristics of an echolocating false killer whale (Pseudorca crassidens)
,”
J. Acoust. Soc. Am.
92
,
1324
1330
.
8.
Dayhoff, J. E. (1990). Neural Network Architectures: An Introduction (Van Nostrand Reinhold, New York), pp. 192–216.
9.
Helweg
,
D. A.
,
Au
,
W. W. L.
,
Roitblat
,
H. L.
, and
Nachtigall
,
P. E.
(
1996
). “
Acoustic basis for recognition of aspect-dependent three-dimensional targets by an echolocating bottlenose dolphin
,”
J. Acoust. Soc. Am.
99
,
2409
2420
.
10.
Helweg, D. A., and Moore, P. W. B. (1997). “Classification of aspect-dependent targets by a biomimetic neutral network,” NRaD Technical Report 1747. DTIS.
11.
Ketten
,
D. K.
,
Moore
,
P. W. B.
,
Dankiewicz
,
L. A.
,
Brill
,
R. L.
, and
Van Bonn
,
W.
(
1997
). “
The slippery slope of a Johnsonian ear: Natural variability versus natural loss
,”
J. Acoust. Soc. Am.
102
,
3101
.
12.
Kremliovsky
,
M.
,
Kadtke
,
J.
,
Inchiosa
,
M.
, and
Moore
,
P.
(
1998
). “
Characterization of dolphin echo-location data using a dynamical classification method
,”
Int. J. Bifurcation Chaos. Appl. Sci. Eng.
8
,
813
823
.
13.
Moore, P. W. B., and Pawloski, D. A. (1990). “Investigations on the control of echolocation pulses,” in Sensory Abilities of Cetaceans: Laboratory and Field Evidence, edited by J. Thomas and R. Kastelein (Plenum, New York), pp. 305–316.
14.
Moore
,
P. W. B.
,
Roitblat
,
H. L.
,
Penner
,
R. H.
, and
Nachtigall
,
P. E.
(
1991
). “
Recognizing successive dolphin echoes with an integrator gateway network
,”
Neural Networks
4
,
701
709
.
15.
Penner, R. H. (1988). “Attention and detection in dolphin echolocation,” in Animal Sonar: Processes and Performance, edited by P. Nachtigall and P. Moore (Plenum, New York), pp. 707–714.
16.
Ridgway
,
S. H.
, and
Carder
,
D. A.
(
1993
). “
High-frequency hearing loss in old (25+years-old) male dolphins
,”
J. Acoust. Soc. Am.
94
,
1830
.
17.
Ridgway
,
S. H.
, and
Carder
,
D. A.
(
1997
). “
Hearing deficits measured in some Tursiops truncatus, and discovery of a deaf/mute dolphin
,”
J. Acoust. Soc. Am.
101
,
590
594
.
18.
Roitblat
,
H. L.
,
Moore
,
P. W. B.
,
Nachtigall
,
P. E.
,
Penner
,
R. H.
, and
Au
,
W. W. L.
(
1989
). “
Natural echolocation with an artificial neural network
,”
Int. J. Neural Net.
1
,
239
248
.
19.
Roitblat, H. L., Moore, P. W. B., Helweg, D. A., and Nachtigall, P. E. (1992). “Representation and Processing of acoustic information in a biomimetic neural network,” in Animals to Animals 2, Proceedings of the Second International Conference on Simulation of Adaptive Behavior, edited by J. A. Meyer, H. L. Roitblat, and S. W. Wilson (MIT Press, Cambridge), pp. 90–99.
20.
Rojas, R. (1996). Neural Networks: A Systematic Approach (Springer-Verlag, New York), pp. 411–426.
21.
Sigurdson
,
J. E.
(
1995
). “
Open-water echolocation of bottom objects by dolphins (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
100
,
2610
.
22.
Thomas, J. A., and Turl, C. W. (1990). “Echolocation characteristics and range detection threshold of a false killer whale (Pseudorca crassidens), in Sensory Abilities of Cetaceans: Laboratory and Field Investigations, edited by J. Thomas and R. Kastelein (Plenum, New York), pp. 321–334.
23.
Thomas J., Stoermer, M., Bower, C., Anderson, L., and Garver, A. (1988). “Detection abilities and signal characteristics of echolocating false killer whale (Pseudorca crassidens),” in Animal Sonar: Processes and Performance, edited by P. Nachtigall and P. Moore (Plenum, New York), pp. 323–328.
This content is only available via PDF.
You do not currently have access to this content.