This study examined whether “modulation masking” could be produced by temporal similarity of the probe and masker envelopes, even when the masker envelope did not contain a spectral component close to the probe frequency. Both masker and probe amplitude modulation were applied to a single 4-kHz sinusoidal or narrow-band noise carrier with a level of 70 dB SPL. The threshold for detecting 5-Hz probe modulation was affected by the presence of a pair of masker modulators beating at a 5-Hz rate (40 and 45 Hz, 50 and 55 Hz, or 60 and 65 Hz). The threshold was dependent on the phase of the probe modulation relative to the beat cycle of the masker modulators; the threshold elevation was greatest (12–15 dB for the sinusoidal carrier and 9–11 dB for the noise carrier, expressed as 20 log m) when the peak amplitude of the probe modulation coincided with a peak in the beat cycle. The maximum threshold elevation of the 5-Hz probe produced by the beating masker modulators was 7–12 dB greater than that produced by the individual components of the masker modulators. The threshold elevation produced by the beating masker modulators was 2–10 dB greater for 5-Hz probe modulation than for 3- or 7-Hz probe modulation. These results cannot be explained in terms of the spectra of the envelopes of the stimuli, as the beating masker modulators did not produce a 5-Hz component in the spectra of the envelopes. The threshold for detecting 5-Hz probe modulation in the presence of 5-Hz masker modulation varied with the relative phase of the probe and masker modulation. The pattern of results was similar to that found with the beating two-component modulators, except that thresholds were highest when the masker and probe were 180° out of phase. The results are consistent with the idea that nonlinearities within the auditory system introduce distortion in the internal representation of the envelopes of the stimuli. In the case of two-component beating modulators, a weak component is introduced at the beat rate, and it has an amplitude minimum when the beat cycle is at its maximum. The results could be fitted well using two models, one based on the concept of a sliding temporal integrator and one based on the concept of a modulation filter bank.

1.
Bacon
,
S. P.
, and
Grantham
,
D. W.
(
1989
). “
Modulation masking: Effects of modulation frequency, depth, and phase
,”
J. Acoust. Soc. Am.
85
,
2575
2580
.
2.
Dau, T. (1996). “Modeling auditory processing of amplitude modulation,” Ph. D. Thesis, University of Oldenburg.
3.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997a
). “
Modeling auditory processing of amplitude modulation: I. Detection and masking with narrowband carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
4.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997b
). “
Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration
,”
J. Acoust. Soc. Am.
102
,
2906
2919
.
5.
Drullman
,
R.
,
Festen
,
J. M.
, and
Plomp
,
R.
(
1994
). “
Effect of temporal envelope smearing on speech reception
,”
J. Acoust. Soc. Am.
95
,
1053
1064
.
6.
Eddins
,
D. A.
(
1993
). “
Amplitude modulation detection of narrow-band noise: Effects of absolute bandwidth and frequency region
,”
J. Acoust. Soc. Am.
93
,
470
479
.
7.
Festen
,
J. M.
, and
Plomp
,
R.
(
1981
). “
Relations between auditory functions in normal hearing
,”
J. Acoust. Soc. Am.
70
,
356
369
.
8.
Fleischer
,
H.
(
1982
). “
Modulationsschwellen von Schmalbandrauschen
,”
Acustica
51
,
154
161
.
9.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hearing Res.
47
,
103
138
.
10.
Green, D. M., and Forrest, T. G. (1988). “Detection of amplitude modulation and gaps in noise,” in Basic Issues in Hearing, edited by H. Duifhuis, J. W. Horst, and H. P. Wit (Academic New York).
11.
Greenberg
,
S.
, and
Arai
,
T.
(
1998
). “
Speech intelligibility is highly tolerant of cross-channel spectral asynchrony
,”
J. Acoust. Soc. Am.
103
,
3057
.
12.
Houtgast
,
T.
(
1989
). “
Frequency selectivity in amplitude-modulation detection
,”
J. Acoust. Soc. Am.
85
,
1676
1680
.
13.
Kay
,
R. H.
(
1982
). “
Hearing of modulation in sounds
,”
Physiol. Rev.
62
,
894
975
.
14.
Lorenzi
,
C.
,
Micheyl
,
C.
, and
Berthommier
,
F.
(
1995
). “
Neuronal correlates of perceptual amplitude-modulation detection
,”
Hearing Res.
90
,
219
227
.
15.
Maiwald
,
D.
(
1967
). “
Ein Funktionsschema des Gehörs zur Beschreibung der Erkennbarkeit kleiner Frequenz-und Amplitudenänderungen
,”
Acustica
18
,
81
92
.
16.
Martens
,
J.-P.
(
1982
). “
A new theory for multi-tone masking
,”
J. Acoust. Soc. Am.
72
,
397
405
.
17.
Møller
,
A. R.
(
1976
). “
Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus
,”
Acta Physiol. Scand.
98
,
157
167
.
18.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
,
Plack
,
C. J.
, and
Biswas
,
A. K.
(
1988
). “
The shape of the ear’s temporal window
,”
J. Acoust. Soc. Am.
83
,
1102
1116
.
19.
Moore
,
B. C. J.
, and
Oxenham
,
A. J.
(
1998
). “
Psychoacoustic consequences of compression in the peripheral auditory system
,”
Psychol. Rev.
105
,
108
124
.
20.
Moore
,
B. C. J.
,
Peters
,
R. W.
, and
Glasberg
,
B. R.
(
1996
). “
Detection of decrements and increments in sinusoids at high overall levels
,”
J. Acoust. Soc. Am.
99
,
3669
3677
.
21.
Oxenham
,
A. J.
, and
Moore
,
B. C. J.
(
1994
). “
Modeling the additivity of nonsimultaneous masking
,”
Hearing Res.
80
,
105
118
.
22.
Oxenham
,
A. J.
, and
Moore
,
B. C. J.
(
1995
). “
Additivity of masking in normally hearing and hearing-impaired subjects
,”
J. Acoust. Soc. Am.
98
,
1921
1935
.
23.
Ozimek
,
E.
, and
Sek
,
A.
(
1988
). “
AM difference limens for noise bands
,”
Acustica
66
,
153
160
.
24.
Palmer, A. R. (1995). “Neural signal processing,” in Hearing, edited by B. C. J. Moore (Academic, San Diego).
25.
Patterson
,
R. D.
,
Allerhand
,
M. H.
, and
Giguère
,
C.
(
1995
). “
Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform
,”
J. Acoust. Soc. Am.
98
,
1890
1894
.
26.
Plack
,
C. J.
, and
Moore
,
B. C. J.
(
1990
). “
Temporal window shape as a function of frequency and level
,”
J. Acoust. Soc. Am.
87
,
2178
2187
.
27.
Plomp
,
R.
(
1988
). “
The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation-transfer function
,”
J. Acoust. Soc. Am.
83
,
2322
2327
.
28.
Rees
,
A.
, and
Møller
,
A. R.
(
1983
). “
Responses of neurons in the inferior colliculus of the rat to AM and FM tones
,”
Hearing Res.
10
,
301
310
.
29.
Rodenburg, M. (1977). “Investigation of temporal effects with amplitude modulated signals,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, London).
30.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
31.
Russell
,
I. J.
, and
Murugasu
,
E.
(
1997
). “
Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities
,”
J. Acoust. Soc. Am.
102
,
1734
1738
.
32.
Schöne
,
P.
(
1979
). “
Messungen zur Schwankungsstärke von amplituden-modulierten Sinustönen
,”
Acustica
41
,
252
257
.
33.
Schreiner, C. E., and Langner, G. (1988). “Coding of temporal patterns in the central auditory system,” in Auditory Function: Neurobiological Bases of Hearing, edited by G. Edelman, W. Gall, and W. Cowan (Wiley, New York).
34.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique
,”
J. Acoust. Soc. Am.
72
,
131
141
.
35.
Sheft
,
S.
, and
Yost
,
W. A.
(
1997
). “
Modulation detection interference with two-component masker modulators
,”
J. Acoust. Soc. Am.
102
,
1106
1112
.
36.
Shofner
,
S.
,
Sheft
,
S.
, and
Guzman
,
S. J.
(
1996
). “
Responses of ventral cochlear nucleus units in the chinchilla to amplitude modulation by low-frequency, two-tone complexes
,”
J. Acoust. Soc. Am.
99
,
3592
3605
.
37.
Snedecor, G. W., and Cochran, W. G. (1967). Statistical Methods (Iowa University Press, Ames, IA).
38.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1996
). “
Cues for discrimination of envelopes
,”
J. Acoust. Soc. Am.
99
,
3638
3646
.
39.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based on modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
40.
Yates
,
G. K.
(
1990
). “
Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions
,”
Hearing Res.
50
,
145
162
.
This content is only available via PDF.
You do not currently have access to this content.