A noncontacting resonant-ultrasound-spectroscopy (RUS) method for measuring elastic constants and internal friction of conducting materials is described, and applied to monocrystalline copper. This method is called electromagnetic acoustic resonance (EMAR). Contactless acoustic coupling is achieved by energy transduction between the electromagnetic field and the ultrasonic vibrations. A solenoidal coil and static magnetic field induce Lorentz forces on specimen surfaces without using a coupling agent. By changing the field direction, a particular set of vibration modes can be selectively excited and detected, an advantage in identifying the vibration modes of the observed resonance peaks. Contactless coupling allows the measure of intrinsic internal friction free from energy loss associated with contact coupling. The elastic constants and internal friction measured by EMAR are compared with those by the usual RUS method for a rectangular-parallelepiped copper monocrystal. Both methods yielded the same elastic constants despite fewer resonant peaks in the EMAR case. The two methods gave essentially the same shear-mode internal friction, but the RUS method gave higher volume-mode internal friction.

1.
J.
Maynard
, “
Resonant ultrasound spectroscopy
,”
Phys. Today
49
,
26
(
1996
).
2.
A. Migliori and J. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997).
3.
A.
Migliori
,
J.
Sarrao
,
M. W.
Visscher
,
T.
Bell
,
M.
Lei
,
Z.
Fisk
, and
R.
Leisure
, “
Resonant ultrasound spectroscopic technique for measurement of the elastic moduli of solids
,”
Physica B
183
,
1
(
1993
).
4.
V.-T.
Kuokkala
and
R. B.
Schwarz
, “
The use of magnetostrictive film transducers in the measurement of elastic moduli and ultrasonic attenuation of solids
,”
Rev. Sci. Instrum.
63
,
3136
(
1992
).
5.
H.
Ledbetter
,
C.
Fortunko
, and
P.
Heyliger
, “
Orthotropic elastic constants of a boron-aluminum fiber-reinforced composite: An acoustic-resonance-spectroscopy study
,”
J. Appl. Phys.
78
,
1542
(
1995
).
6.
K.
Tanaka
,
T.
Ichitsubo
,
H.
Inui
,
M.
Yamaguchi
, and
M.
Koiwa
, “
Single-crystal elastic constants of γ-TiAl
,”
Philos. Mag. A
73
,
71
(
1996
).
7.
K.
Tanaka
and
M.
Koiwa
, “
Single-crystal elastic constants of intermetallic compounds
,”
Intermetallics
4
,
29
(
1996
).
8.
K.
Tanaka
,
K.
Okamoto
,
H.
Inui
,
Y.
Minonishi
,
M.
Yamaguchi
, and
M.
Koiwa
, “
Elastic constants and their temperature dependence for the intermetallic compound Ti3Al,
Philos. Mag. A
73
,
1475
(
1996
).
9.
D.
Isaak
,
J.
Carnes
,
O.
Anderson
, and
H.
Oda
, “
Elasticity of fused silica spheres under pressure using resonant ultrasound spectroscopy
,”
J. Acoust. Soc. Am.
104
,
2200
(
1998
).
10.
R.
Holland
, “
Resonant properties of piezoelectric ceramic rectangular parallelepipeds
,”
J. Acoust. Soc. Am.
43
,
988
(
1968
).
11.
H.
Demarest
, Jr.
, “
Cube-resonance method to determine the elastic constants of solids
,”
J. Acoust. Soc. Am.
49
,
768
(
1971
).
12.
I.
Ohno
, “
Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals
,”
J. Phys. Earth
24
,
355
(
1976
).
13.
J.
Maynard
, “
The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement
,”
J. Acoust. Soc. Am.
91
,
1754
(
1992
).
14.
K. Okamoto, K. Tanaka, and M. Koiwa, Proceedings of the Second Pacific Rim International Conference on Advanced Materials and Processing, edited by K. S. Shin, J. K. Yoon, and S. J. Kim (Korean Institute of Metals and Materials, 1995), p. 1153.
15.
M.
Hirao
,
H.
Ogi
, and
H.
Fukuoka
, “
Resonance EMAT system for acoustoelastic stress evaluation in sheet metals
,”
Rev. Sci. Instrum.
64
,
3198
(
1993
).
16.
H.
Ogi
,
M.
Hirao
, and
T.
Honda
, “
Ultrasonic attenuation and grain size evaluation using electromagnetic acoustic resonance
,”
J. Acoust. Soc. Am.
98
,
458
(
1995
).
17.
M.
Hirao
and
H.
Ogi
, “
Electromagnetic acoustic resonance and materials characterization
,”
Ultrasonics
35
,
413
(
1997
).
18.
W.
Johnson
, “
Ultrasonic damping in pure aluminum at elevated temperature
,”
J. Appl. Phys.
83
,
2462
(
1998
).
19.
H. Ogi, G. Shimoike, M. Hirao, K. Takashima, H. Ohtani, and H. Ledbetter, Review of Progress in QNDE, Vol. 18, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1999), p. 1337.
20.
H.
Ogi
, “
Field dependence of coupling efficiency between electromagnetic field and ultrasonic bulk waves
,”
J. Appl. Phys.
82
,
3940
(
1997
).
21.
H. Ledbetter and S. Kim, Personal communication, unpublished.
22.
R.
Hearmon
, “
Elastic constants of anisotropic materials-II
,”
Adv. Phys.
5
,
323
(
1956
).
23.
E.
Kröner
, “
Self-consistent scheme and graded disorder in polycrystal elasticity
,”
J. Phys. F
8
,
2261
(
1978
).
24.
Y.
Sumino
,
I.
Ohno
,
T.
Goto
, and
M.
Kumazawa
, “
Measurement of elastic constants and internal friction in single-crystal MgO by rectangular parallelepiped resonance
,”
J. Phys. Earth
24
,
263
(
1976
).
25.
H.
Ogi
,
N.
Suzuki
, and
M.
Hirao
, “
Noncontact ultrasonic spectroscopy on deforming polycrystalline copper; dislocation damping and acoustoelasticity
,”
Metall. Mater. Trans. A
29
,
2987
(
1998
).
26.
H. Ogi, A. Tsujimoto, M. Hirao, and H. Ledbetter (unpublished).
27.
H.
Ogi
,
M.
Hirao
, and
K.
Minoura
, “
Noncontact measurement of ultrasonic attenuation during rotating fatigue test of steel
,”
J. Appl. Phys.
81
,
3677
(
1997
).
28.
H.
Ledbetter
,
C.
Fortunko
, and
P.
Heyliger
, “
Elastic constants and internal friction of polycrystalline copper
,”
J. Mater. Res.
10
,
1352
(
1995
).
29.
P. Heyliger and H. Ledbetter, in Mechanical Spectroscopy, edited by L. Magalas (Elsevier, Amsterdam, 1999) (unpublished).
This content is only available via PDF.
You do not currently have access to this content.