This paper investigates classification of submerged elastic targets using a sequence of backscattered acoustic signals corresponding to measurements at multiple target-sensor orientations. Wavefront and resonant features are extracted from each of the multiaspect signals using the method of matching pursuits, with a wave-based dictionary. A discrete hidden Markov model (HMM) is designed for each of the target classes under consideration, with identification of an unknown target effected by considering which model has the maximum likelihood of producing the observed sequence of feature vectors. HMMs are stochastic models which are well suited to describing piecewise-stationary processes, and are appropriate for multiaspect classification due to the strong aspect dependence of the scattered fields for most realistic targets. After establishing the physical and geometric correspondence between multiaspect sensing and the HMM parameters, performance is assessed through consideration of measured acoustic data from five similar submerged elastic targets. Results are presented with and without additive noise.

1.
T. J. Yoder, J. A. Bucaro, B. H. Houston, and H. J. Simpson, “Long-range detection and identification of underwater mines using very low frequencies (1–10 KHz),” Proceedings of the SPIE AeroSense Conference, Orlando, FL, April 1998 (paper 3392-27).
2.
L. Flax, G. C. Gaunaurd, and H. Uberall, “Theory of resonant scattering,” in Physical Acoustics XV (Academic, New York, 1981).
3.
M. L.
Rumerman
, “
Contribution of membrane wave reradiation to scattering from finite cylindrical steel shells in water
,”
J. Acoust. Soc. Am.
93
,
5
14
(
1993
).
4.
D. M.
Photiadid
,
J. A.
Bucaro
, and
B. H.
Houston
, “
Scattering from flexural waves on a ribbed cylindrical shell
,”
J. Acoust. Soc. Am.
96
,
2785
2793
(
1994
).
5.
B. H.
Houston
,
J. A.
Bucaro
, and
D. M.
Photiadis
, “
Broadband acoustic scattering from a ribbed shell
,”
J. Acoust. Soc. Am.
98
,
2851
2861
(
1995
).
6.
J. B.
Keller
, “
Geometrical theory of diffraction
,”
J. Opt. Soc. Am.
52
,
116
130
(
1962
).
7.
I. T.
Lu
and
L. B.
Felsen
, “
Ray, mode, and hybrid options for source excited propagation in an elastic plate
,”
J. Acoust. Soc. Am.
78
,
223
233
(
1985
).
8.
M. R.
Azimi-Sadjadi
,
J.
Wilbur
, and
G. J.
Dobeck
, “
Isolation of resonance in acoustic backscatter from elastic targets using adaptive estimation schemes
,”
IEEE J. Ocean Eng.
20
,
346
353
(
1995
).
9.
A. J.
Poggio
,
M. L.
Van Blaricum
,
E. K.
Miller
, and
R.
Mittra
, “
Evaluation of a processing technique for transient data
,”
IEEE Trans. Antennas Propag.
26
,
165
173
(
1978
).
10.
M.
McClure
,
R. C.
Qiu
, and
L.
Carin
, “
On the superresolution identification of observables from swept-frequency scattering data
,”
IEEE Trans. Antennas Propag.
45
,
631
641
(
1997
).
11.
R. A.
Atles
, “
Sonar for generalized target description and its similarity to animal echolocation systems
,”
J. Acoust. Soc. Am.
59
,
97
105
(
1976
).
12.
M.
McClure
and
L.
Carin
, “
Wave-based matching-pursuits detection of submerged elastic targets
,”
J. Acoust. Soc. Am.
104
,
937
946
(
1998
).
13.
C.
Herley
and
M.
Vetterli
, “
Orthogonal time-varying filter banks and wavelet packets
,”
IEEE Trans. Signal Process.
42
,
2650
2663
(
1994
).
14.
M. V.
Wickerhauser
and
R. R.
Coifman
, “
Entropy based algorithms for best basis selection
,”
IEEE Trans. Inf. Theory
32
,
712
718
(
1992
).
15.
S. G.
Mallat
and
Z.
Zhang
, “
Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
(
1993
).
16.
M.
McClure
and
L.
Carin
, “
Matching pursuits with a wave-based dictionary
,”
IEEE Trans. Signal Process.
45
,
2912
2927
(
1997
).
17.
J. A. Simmons, P. A. Saillant, and S. P. Dear, “Through a bat’s ear,” IEEE Spectr. , 46–48 (1992).
18.
L. R.
Rabiner
and
B. H.
Juang
, “
An introduction to hidden Markov models
,”
IEEE Acoust. Speech Signal Proc. Mag.
3
,
4
16
(
1986
).
19.
L. R.
Rabiner
, “
A tutorial on hidden Markov models and selected applications in speech recognition
,”
Proc. IEEE
77
,
257
285
(
1989
).
20.
J.
Makhoul
,
S.
Raucos
, and
H.
Gish
, “
Vector quantization in speech coding
,”
Proc. IEEE
73
,
1551
1558
(
1985
).
21.
Y.
Linde
,
A.
Buzo
, and
R. M.
Gray
, “
An algorithm for vector quantizer design
,”
IEEE Trans. Commun.
28
,
84
95
(
1980
).
22.
J. Deller, J. Proakis, J. Hansen, Discrete-Time Processing of Speech Signals (Prentice-Hall, Englewood Cliffs, NJ, 1993).
23.
L. L. Scharf, Statistical Signal Processing, Detection, Estimation, and Time Series Analysis (Addison-Wesley, Reading, MA, 1990).
24.
A.
Viterbi
, “
Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
,”
IEEE Trans. Inf. Theory
13
,
260
269
(
1967
).
25.
J. E.
Bondaryk
and
H.
Schmidt
, “
Array processing for the analysis of stiffened, fluid-loaded, cylindrical shells
,”
J. Acoust. Soc. Am.
97
,
1067
1074
(
1995
).
26.
D. M.
Photiadis
,
J. A.
Bucaro
, and
B. H.
Houston
, “
The effect of internal oscillators on the acoustic response of a submerged shell
,”
J. Acoust. Soc. Am.
101
,
895
995
(
1997
).
27.
R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra (Dover, New York, 1958), Appedix B.5, pp. 95–100.
28.
D.
Dragonette
,
D. M
Drumheller
,
C. F.
Gaumond
,
D. H.
Hughes
,
B. T.
O’Connor
,
N.
Yen
, and
T.
Yoder
, “
The application of two-dimensional signal transformations to the analysis and synthesis of structural excitations observed in acoustical scattering
,”
Proc. IEEE
84
,
1249
1264
(
1996
).
29.
J. H. L.
Hansen
and
B.
Womack
, “
Feature analysis and neural network based classification of speech under stress
,”
IEEE Trans. Speech Audio Process.
4
,
307
313
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.