Theoretical/numerical models of underwater sound propagation usually incorporate a downgoing radiation condition on the transverse component of the acoustic field. Most one-way or parabolic equation (PE) solvers approximate this radiation condition by appending an absorbing layer to the computational mesh and setting the field to zero at the base of this layer. Papadakis et al. [J. Acoust. Soc. Am. 92, 2030–2038 (1992)] replaced such approximate treatments with a nonlocal boundary condition (NLBC) that exactly transforms the semi-infinite PE problem to an equivalent one in a bounded domain. Papadakis’ approach requires the evaluation of a spectral (wave number) integral whose integrand is inversely proportional to the impedance of the subbottom medium. In this paper, an alternate procedure is analyzed for obtaining NLBCs directly from the z-space Crank–Nicolson solvers for both the Tappert and Claerbout PEs. Formulas for the field ψ at range r+Δr are derived in terms of the known field at the previously calculated range values from 0 to r by expanding the appropriate “vertical wave number” operator for the downgoing field in powers of the translation operator R=exp(−Δr∂r). The effectiveness of these NLBCs is examined for several numerical examples relevant to one-way underwater sound propagation.

1.
F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (AIP, New York, 1994), Chap. 6, pp. 343–412.
2.
V.
Shevshenko
, “
The expansion of the fields of open waveguides in proper and improper modes
,”
Radiophys. Quantum Electron.
14
,
972
977
(
1974
).
3.
J.
Bérenger
, “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
,
185
200
(
1994
).
4.
D.
Yevick
,
J.
Yu
, and
Y.
Yayon
, “
Optimal absorbing boundary conditions
,”
J. Opt. Soc. Am. A
12
,
107
110
(
1995
).
5.
D.
Yevick
,
J.
Yu
, and
F.
Schmidt
, “
Analytic studies of absorbing and impedance-matched boundary layers
,”
IEEE Photonics Technol. Lett.
9
,
73
75
(
1997
).
6.
F. D. Tappert, “
The parabolic approximation method,” in Wave Propagation and Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis (Springer, New York, 1977), Chap. 5, pp. 224–287.
7.
J. A. Davis, D. White, and R. C. Cavanagh, “NORDA Parabolic Equation Workshop, 31 March–3 April 1981,” Tech. Note 143, Naval Ocean Research and Development Activity, NSTL Station, MS, 1982; available from NTIS, No. AD-121 932.
8.
J. S. Papadakis, “Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics,” in J. A. Davis, D. White, and R. C. Cavanagh, “NORDA Parabolic Equation Workshop, 31 March–3 April 1981,” Tech. Note 143, Naval Ocean Research and Development Activity, NSTL Station, MS, 1982; available from NTIS, No. AD-121 932, p. 83.
9.
J. S.
Papadakis
,
M. I.
Taroudakis
,
P. J.
Papadakis
, and
B.
Mayfield
, “
A New method for a realistic treatment of the sea bottom in the parabolic approximation
,”
J. Acoust. Soc. Am.
92
,
2030
2038
(
1992
).
10.
D. J.
Thomson
and
M. E.
Mayfield
, “
An exact radiation condition for use with the a posteriori PE method
,”
J. Comput. Acoust.
2
,
113
132
(
1994
).
11.
V. A.
Dougalis
and
N. A.
Kampanis
, “
Finite element methods for the parabolic equation with interfaces
,”
J. Comput. Acoust.
4
,
55
88
(
1996
).
12.
J. S.
Papadakis
, “
Exact, nonreflecting boundary conditions for parabolic-type approximations in underwater acoustics
,”
J. Comput. Acoust.
2
,
83
98
(
1994
).
13.
J. F.
Claerbout
, “
Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure
,”
Geophysics
35
,
407
418
(
1970
).
14.
S. W.
Marcus
, “
A generalized impedance method for application of the parabolic approximation to underwater acoustics
,”
J. Acoust. Soc. Am.
90
,
391
398
(
1991
).
15.
T. W. Dawson, D. J. Thomson, and G. H. Brooke, “Non-local boundary conditions for acoustic PE predictions involving inhomogeneous layers,” in 3rd European Conference on Underwater Acoustics, Vol. 1, edited by J. S. Papadakis (Crete University Press, Heraklion, 1996), pp. 183–188.
16.
M. E. Mayfield and D. J. Thomson, “An FFT-based non-local boundary condition for the parabolic equation,” in 3rd European Conference on Underwater Acoustics, Vol. 1, edited by J. S. Papadakis (Crete University Press, Heraklion, 1996), pp. 237–242.
17.
V. A.
Baskakov
and
A. V.
Popov
, “
Implementation of transparent boundaries for numerical solution of the Schrodinger equation
,”
Wave Motion
14
,
121
128
(
1991
).
18.
A. V.
Popov
, “
Accurate modeling of transparent boundaries in quasi-optics
,”
Radio Sci.
31
,
1781
1790
(
1996
).
19.
S. W.
Marcus
, “
A hybrid (finite-difference–surface Green’s function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain
,”
IEEE Trans. Antennas Propag.
40
,
1451
1458
(
1992
).
20.
M. F.
Levy
, “
Horizontal parabolic equation solution of radiowave propagation problems on large domains
,”
IEEE Trans. Antennas Propag.
43
,
137
144
(
1995
).
21.
M. F.
Levy
, “
Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems
,”
IEEE Trans. Antennas Propag.
45
,
66
72
(
1997
).
22.
M. E.
Mayfield
and
D. J.
Thomson
, “
A non-reflecting boundary condition for use in PE calculations of sound propagation in air
,”
J. Acoust. Soc. Am.
92
,
2406
(
1992
).
23.
R. J. Jardine, W. L. Siegmann, and J. S. Robertson, “Alternative nonreflecting boundary conditions for PE modeling of atmospheric acoustic propagation,” in Environmental Acoustics, Vol. 2, edited by D. Lee and M. H. Schultz (World Scientific, Singapore, 1994), pp. 849–868.
24.
F.
Schmidt
and
P.
Deuflhard
, “
Discrete transparent boundary condition for the numerical solution of Fresnel’s equation
,”
Comput. Math. Appl.
29
,
53
76
(
1995
).
25.
F.
Schmidt
and
D.
Yevick
, “
Analysis of boundary conditions for the Fresnel equation
,”
J. Comput. Phys.
134
,
96
107
(
1997
).
26.
M. D.
Collins
, “
Benchmark calculations for higher-order parabolic equations
,”
J. Acoust. Soc. Am.
87
,
1535
1538
(
1990
).
27.
M. D.
Collins
, “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
28.
H. Schmidt, “SAFARI Seismo-Acoustic Fast field Algorithm for Range-Independent environments,” SACLANT Undersea Research Centre, San Bartolomeo, Italy, Rep. SR-113, 1988.
29.
R. B.
Evans
, “
A coupled mode solution for acoustic propagation in a waveguide with a stepwise depth variations of a penetrable bottom
,”
J. Acoust. Soc. Am.
74
,
188
195
(
1983
).
30.
D.
Lee
and
S. T.
McDaniel
, “
Ocean acoustic propagation by finite-difference methods
,”
Comput. Math. Appl.
14
,
305
423
(
1987
).
31.
D.
Yevick
and
D. J.
Thomson
, “
A hybrid split-step/finite-difference PE algorithm for variable-density media
,”
J. Acoust. Soc. Am.
101
,
1328
1335
(
1997
).
32.
H. P.
Bucker
, “
An equivalent bottom for use with the split-step algorithm
,”
J. Acoust. Soc. Am.
73
,
486
491
(
1983
).
33.
Z. Y.
Zhang
and
C. T.
Tindle
, “
Improved equivalent fluid approximations for a low shear speed ocean bottom
,”
J. Acoust. Soc. Am.
98
,
3391
3396
(
1995
).
34.
F. B.
Jensen
and
C. M.
Ferla
, “
Numerical solutions of range-dependent benchmark problems in ocean acoustics
,”
J. Acoust. Soc. Am.
87
,
1499
1510
(
1990
).
35.
D. J.
Thomson
, “
Wide-angle parabolic equation solutions to two range-dependent benchmark problems
,”
J. Acoust. Soc. Am.
87
,
1514
1520
(
1990
).
36.
M. B.
Porter
,
F. B.
Jensen
, and
C. M.
Ferla
, “
The problem of energy conservation in one-way models
,”
J. Acoust. Soc. Am.
89
,
1058
1067
(
1991
).
37.
M. D.
Collins
, “
The rotated parabolic equation and sloping ocean bottoms
,”
J. Acoust. Soc. Am.
87
,
1035
1037
(
1990
).
38.
M. D.
Collins
and
E. K.
Westwood
, “
A higher-order energy-conserving parabolic equation for range-dependent ocean depth, sound speed, and density
,”
J. Acoust. Soc. Am.
89
,
1068
1075
(
1991
).
39.
M. D.
Collins
and
R. B.
Evans
, “
A two-way parabolic equation for acoustic backscattering in the ocean
,”
J. Acoust. Soc. Am.
91
,
1357
1368
(
1992
).
40.
D.
Lee
and
W. L.
Siegmann
, “
Finite difference treatment of irregular interfaces: an error analysis
,”
J. Comput. Acoust.
3
,
1
14
(
1995
).
41.
G. H.
Brooke
,
D. J.
Thomson
, and
P. M.
Wort
, “
A sloping-boundary condition for efficient PE calculations in range-dependent acoustic media
,”
J. Comput. Acoust.
4
,
11
27
(
1996
).
42.
D. J. Thomson, G. H. Brooke, and E. S. Holmes, “PE approximations for scattering from a rough surface,” Defence Research Establishment Pacific, Victoria, B.C., Technical Memorandum 95–21, 1995.
This content is only available via PDF.
You do not currently have access to this content.