Several methods have been proposed to estimate the viscoelastic properties of soft biological tissues using forced low-frequency vibrations (10–500 Hz). Those methods are based on the measurement of phase velocity of the shear waves (∼5 m/s). It is shown in this article that the measurements of velocity as well as attenuation are subjected to biases. These biases are related to reflected waves created at boundaries, to the nonnegligible size of the piston source which causes diffraction effects and to the influence of a low-frequency compressional wave. Indeed, a theoretical analysis of the field radiated by a point source explains how mechanical vibrations of a piston generate a shear wave with a longitudinal component and how this component can interfere with a low-frequency compressional wave. However, by using a low-frequency transient excitation, these biases can be avoided. Then the precise numerical values of elasticity and viscosity can be deduced. Experiments in phantoms and beef muscles are shown. Moreover, a relative hardness imaging of a phantom composed of two media with different elasticities is presented.

1.
Y.
Yamakoshi
,
J.
Sato
, and
T.
Sato
, “
Ultrasonic imaging of internal vibration of soft tissue under forced vibration
,”
IEEE Trans. Ultrason. Ferroelectr. Freq.
UFFC-37
,
45
53
(
1990
).
2.
F.
Lee
,
J. P.
Bronson
,
R. M.
Lerner
,
K. J.
Parker
,
S. R.
Huang
, and
D. J.
Roach
, “
Sonoelasticity imaging results in in vitro specimens
,”
Radiology
181
,
237
239
(
1991
).
3.
V. V.
Kazakov
and
B. N.
Klochkov
, “
Low frequency mechanical properties of the soft tissue of the human arm
,”
Biophysics.
34
,
742
747
(
1989
).
4.
V.
Dutt
,
R. R.
Kinnick
, and
J. F.
Greanleaf
, “
Acoustic shear wave displacement measurement using ultrasound
,”
IEEE Ultrasonic Symposium
2
,
1185
1188
(
1996
).
5.
R.
Muthupillari
,
D. J.
Lomas
,
P. J.
Rossman
,
J. F.
Greenleaf
,
A.
Manduca
, and
R. L.
Ehman
, “
Magnetic resonance elastography by direct visualization of propagating acoustic strain wave
,”
Science
269
,
29
(
1995
).
6.
K. J.
Parker
and
R. M.
Lerner
, “
Sonoelasticity of organs: Shear waves ring a bell
,”
J. Ultrasound Med.
11
,
387
392
(
1992
).
7.
H. F. Pollard, Sound Wave in Solid (Pion Limited, London, 1977), p. 206.
8.
J.
Ophir
,
I.
Céspedes
,
H.
Ponnekanti
,
Y.
Yasdi
, and
X.
Li
, “
Elastography: A quantitative method for imaging the elasticity of biological tissues
,”
Ultrason. Imaging
13
,
111
134
(
1991
).
9.
K. J.
Parker
,
S. R.
Huang
,
R. A.
Musulin
, and
R. M.
Lerner
, “
Tissue response to mechanical vibrations for sonoelasticity imaging
,”
Ultrasound Med. Biol.
16
,
241
246
(
1990
).
10.
W. F. Walker and G. E. Trahey, “A fundamental limit on the performance of correlation based on phase correction and flow estimation technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-41 (1994).
11.
H. L.
Oestrecher
, “
Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics
,”
J. Acoust. Soc. Am.
23
, (
1951
).
12.
K. Fujii, T. Sato, K. Kameyama, T. Inoue, K. Yokoyama, and K. Kobayashi, “Imaging system of precise hardness distribution in soft tissue in vivo using forced vibration and ultrasonic detection,” in Acoustical Imaging (Plenum, New York, 1995), Vol. 21.
13.
A.
Lhemery
, “
Un Modèle efficace pour Prédire le Champ Transitoire Rayonné dans un Milieu Elastique par les Transducteurs Ultrasonores
,”
J. Phys. IV
4
, (
1994
).
14.
D. Royer and E. Dieulesaint, Ondes Elastiques dans les Solides (Masson, Paris, 1996), Tome 1, pp. 43–49.
15.
D. C.
Gakenheimer
and
J.
Miklowitz
, “
Transient excitation of an elastic half-space by a point load traveling on the surface
,”
J. Appl. Mech.
36
,
505
(
1969
).
16.
A. P.
Sarvazyan
, “
Shear acoustic properties of soft biological tissues in medical diagnotics
,”
J. Acoust. Soc. Am.
93
,
2329
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.