Previous reports of frequency modulations, or glides, in the impulse responses of the auditory periphery have been limited to analyses of basilar-membrane measurements and responses of auditory-nerve (AN) fibers with best frequencies (BFs) greater than 1.7 kHz. These glides increased in frequency as a function of time. In this study, the instantaneous frequency as a function of time was measured for impulse responses of AN fibers in the cat with a range of BFs (250–4500 Hz). Impulse responses were estimated from responses to wideband noise using the reverse-correlation technique. The impulse responses had increasing frequency glides for fibers with BFs greater than 1500 Hz, nearly constant frequency as a function of time for BFs between 750 and 1500 Hz, and decreasing frequency glides for BFs below 750 Hz. Over the levels tested, the glides for fibers at all BFs were nearly independent of stimulus level, consistent with previous reports of impulse responses of the basilar membrane and AN fibers. Implications of the different glide directions observed for different BFs are discussed, specifically in relation to models for the auditory periphery as well as for the derivation of impulse responses for the human auditory periphery based on psychophysical measurements.

1.
deBoer
,
E.
(
1967
). “
Correlation studies applied to the frequency resolution of the cochlea
,”
J. Aud. Res.
7
,
209
217
.
2.
deBoer
,
E.
(
1973
). “
On the principle of specific coding
,”
J. Dyn. Syst., Meas., Control
95G
,
265
273
.
3.
deBoer
,
E.
(
1997
). “
Connecting frequency selectivity and nonlinearity for models of the cochlea
,”
Aud. Neurosci.
3
,
377
388
.
4.
deBoer
,
E.
, and
Jongh
,
H. R. de
(
1978
). “
On cochlear encoding: Potentialities and limitations of the reverse correlation technique
,”
J. Acoust. Soc. Am.
63
,
115
135
.
5.
deBoer
,
E.
, and
Kuyper
,
P.
(
1968
). “
Triggered correlation
,”
IEEE Trans. Biomed. Eng.
15
,
169
179
.
6.
deBoer
,
E.
, and
Nuttall
,
A. L.
(
1996
). “
Cochlear travel time and minimum phase
,”
Assoc. Res. Otolaryngol.
19
,
57
.
7.
deBoer
,
E.
, and
Nuttall
,
A. L.
(
1997
). “
The mechanical waveform of the basilar membrane. I. Frequency modulations (“glides”) in impulse responses and cross-correlation functions
,”
J. Acoust. Soc. Am.
101
,
3583
3592
.
8.
Carney
,
L. H.
, and
Yin
,
T. C. T.
(
1988
). “
Temporal coding of resonances by low-frequency auditory nerve fibers: Single fiber responses and a population model
,”
J. Neurophysiol.
60
,
1653
1677
.
9.
Carney
,
L. H.
(
1990
). “
Sensitivities of cells in the anteroventral cochlear nucleus of cat to spatio-temporal discharge patterns across primary afferents
,”
J. Neurophysiol.
64
,
437
456
.
10.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
11.
Eggermont
,
J. J.
(
1993
). “
Wiener and Volterra analyses applied to the auditory system
,”
Hearing Res.
66
,
177
201
.
12.
Eggermont
,
J. J.
,
Johannesma
,
P. I. M.
, and
Aertsen
,
A. M. H.
(
1983
). “
Reverse-correlation methods in auditory research
,”
Q. Rev. Biophys.
16
,
341
414
.
13.
Evans, E. F. (1981). “The dynamic range problem: Place and time coding at the level of cochlear nerve and nucleus,” in Neuronal Mechanisms of Hearing, edited by J. Syka and L. Aitkin (Plenum, New York), pp. 69–86.
14.
Evans, E. F. (1985). “Aspects of the neural coding of time in the mammalian peripheral auditory system relevant to temporal resolution,” in: Time Resolution in Auditory Systems, 11th Danavox Symposium, edited by A. Michelsen (Springer, New York), pp. 74–95.
15.
Haykin, S. S. (1994). Communication Systems (Wiley, New York).
16.
Irino
,
T.
, and
Patterson
,
R. D.
(
1997
). “
A time-domain, level-dependent auditory filter: The gammachirp
,”
J. Acoust. Soc. Am.
101
,
412
419
.
17.
Kiang, N. Y.-S., Watanabe, T., Thomas, E. C., and Clark, L. F. (1965). “Discharge patterns of single fibers in the cat’s auditory nerve,” MIT Research Monograph No. 35 (MIT, Cambridge, MA).
18.
Lee
,
Y. W.
, and
Schetzen
,
M.
(
1965
). “
Measurement of the Wiener kernels of a non-linear system by cross-correlation
,”
Int. J. Control
2
,
237
254
.
19.
Liberman
,
M. C.
(
1982
). “
The cochlear frequency map for the cat: labelling auditory nerve fibers of known characteristic frequency
,”
J. Acoust. Soc. Am.
72
,
1441
1449
.
20.
Lin
,
T.
, and
Guinan
, Jr.,
J. J.
(
1998
). “
Auditory-nerve discharge patterns in response to high-sound-level clicks suggest that two different resonances are involved
,”
Assoc. Res. Otolaryngol.
21
,
137
.
21.
Marmarelis, P. Z., and Marmarelis, V. Z. (1978). Analysis of Physiological Systems: the White Noise Approach (Plenum, New York).
22.
Mo/ller
,
A. R.
(
1977
). “
Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli
,”
J. Acoust. Soc. Am.
62
,
135
142
.
23.
Mo/ller, A. R. (1981). “Coding of complex sounds in the auditory nervous system,” in Neuronal Mechanisms of Hearing, edited by J. Syka and L. Aitkin (Plenum, New York), pp. 87–103.
24.
Mo/ller, A. R. (1983). Auditory Physiology (Academic, New York), pp. 220ff and Fig. 3.13.
25.
Mo/ller
,
A. R.
, and
Nilsson
,
H. G.
(
1979
). “
Inner ear impulse response and basilar membrane modelling
,”
Acustica
41
,
258
262
.
26.
Recio, A., Narayan, S. S., and Ruggero, M. A. (1997). “Wiener-kernel analysis of basilar-membrane responses to white noise,” in Diversity in Auditory Mechanics, edited by E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar (World Scientific, Singapore), pp. 325–331.
27.
Recio
,
A.
,
Rich
,
N. C.
,
Narayan
,
S. S.
, and
Ruggero
,
M. A.
(
1998
). “
Basilar-membrane responses to clicks at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
103
,
1972
1989
.
28.
Rhode
,
W. S.
(
1971
). “
Observations of the vibrations of the basilar membrane in squirrel monkeys using the Mössbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
29.
Robles
,
L.
,
Rhodes
,
W. S.
, and
Geisler
,
C. D.
(
1976
). “
Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect
,”
J. Acoust. Soc. Am.
59
,
926
939
.
30.
Robles
,
L.
,
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1986
). “
Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input–output functions, tuning curves and response
,”
J. Acoust. Soc. Am.
80
,
1364
1374
.
31.
Rosen
,
S.
, and
Baker
,
R. J.
(
1994
). “
Characterizing auditory filter nonlinearity
,”
Hearing Res.
73
,
231
243
.
32.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique
,”
J. Acoust. Soc. Am.
72
,
131
141
.
33.
Shekhter, I. (1997). “A phenomenological model for nonlinear response properties of auditory-nerve fibers,” Masters thesis, Boston University.
34.
Shekhter
,
I.
, and
Carney
,
L. H.
(
1997
). “
A nonlinear auditory nerve model for CF-dependent shifts in tuning with sound level
,”
Assoc. Res. Otolaryngol.
20
,
617
.
This content is only available via PDF.
You do not currently have access to this content.