Although the mammalian larynx exhibits little structural variation compared to sound-producing organs in other taxa (birds or insects), there are some morphological features which could lead to significant differences in acoustic functioning, such as air sacs and vocal membranes. The vocal membrane (or “vocal lip”) is a thin upward extension of the vocal fold that is present in many bat and primate species. The vocal membrane was modeled as an additional geometrical element in a two-mass model of the larynx. It was found that vocal membranes of an optimal angle and length can substantially lower the subglottal pressure at which phonation is supported, thus increasing vocal efficiency, and that this effect is most pronounced at high frequencies. The implications of this finding are discussed for animals such as bats and primates which are able to produce loud, high-pitched calls. Modeling efforts such as this provide guidance for future empirical investigations of vocal membrane structure and function, can provide insight into the mechanisms of animal communication, and could potentially lead to better understanding of human clinical disorders such as sulcus vocalis.

1.
Alipour-Haghighi, F., and Titze, I. R. (1985). “Simulation of particle trajectories of vocal fold tissue during phonation,” in Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control, edited by I. R. Titze and R. C. Scherer (Denver Center for the Performing Arts, Denver, CO).
2.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Krischer
,
K.
(
1994
). “
Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions
,”
J. Acoust. Soc. Am.
95
,
3595
3604
.
3.
Brown
,
C. H.
, and
Cannito
,
M. P.
(
1995
). “
Modes of vocal variation in Syke’s monkey (Cercopithecus albogularis) squeals
,”
J. Comp. Psych.
109
,
398
415
.
4.
Dolansky
,
L.
, and
Tjernlund
,
P.
(
1968
). “
On certain irregularities of voiced-speech wave-forms
,”
IEEE Trans. Audio Electroacoust.
AU-16
,
51
56
.
5.
Fant, G. (1960). Acoustic Theory of Speech Production (Mouton, The Hague).
6.
Fitch
,
W. T.
(
1997
). “
Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques
,”
J. Acoust. Soc. Am.
102
,
1213
1222
.
7.
Fitch
,
W. T.
, and
Hauser
,
M. D.
(
1995
). “
Vocal production in nonhuman primates: Acoustics, physiology, and functional constraints on ‘honest’ advertisement
,”
Am. J. Prima.
37
,
191
219
.
8.
Fletcher, N. H. (1992). Acoustic Systems in Biology (Oxford U.P., Oxford, UK).
9.
Fletcher, N. H., and Rossing, T. D. (1991). The Physics of Musical Instruments (Springer-Verlag, New York).
10.
Gautier
,
J. P.
(
1971
). “
Etude morphologique et fonctionnelle des annexes extra-larynges des cercopithecinae; liaison avec les cris d’espacement
,”
Biol. Gabonica
7
,
230
267
.
11.
Griffin, D. R. (1958). Listening in the Dark (Yale U.P., New Haven, CT).
12.
Griffiths
,
T. A.
(
1978
). “
Modification of M. cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses
,”
J. Mammal.
59
(
4
),
724
730
.
13.
Harrison, D. F. N. (1995). The Anatomy and Physiology of the Mammalian Larynx (Cambridge U.P., New York).
14.
Hartley
,
D. J.
, and
Suthers
,
R. A.
(
1988
). “
The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti
,”
J. Acoust. Soc. Am.
84
,
1201
1213
.
15.
Hast
,
M.
(
1989
). “
The larynx of roaring and non-roaring cats
,”
J. Anat.
163
,
117
21
.
16.
Herzel, H., and Wendler, J. (1991). “Evidence of chaos in phonatory samples,” in Proceedings of ROSPEECH, Genova, 1991 (ESCA), pp. 263–266.
17.
Herzel
,
H.
(
1993
). “
Bifurcations and chaos in voice signals
,”
Appl. Mech. Rev.
46
,
399
413
.
18.
Herzel, H. (1996). “Possible mechanisms of vocal instabilities,” in Vocal Fold Physiology: Controlling Complexity & Chaos, edited by P. J. Davis and N. H. Fletcher (Singular, San Diego), pp. 63–75.
19.
Hill, W. C. O. (1957). Primates: Comparative Anatomy and Taxonomy; 3 Pithecoidea, Platyrrhini (Interscience, New York).
20.
Hill
,
W. C. O.
, and
Booth
,
A. H.
(
1957
). “
Voice and larynx in African and Asiatic Colobidae
,”
J. Bombay Nat. Hist. Soc.
54
,
309
321
.
21.
Hirano
,
M.
(
1974
). “
Morphological structure of the vocal cord as a vibrator and its variations
,”
Folia Phoniatr.
26
,
89
94
.
22.
Hirano
,
M.
,
Yoshida
,
T.
,
Tanaka
,
S.
, and
Hibi
,
S.
(
1990
). “
Sulcus vocalis: functional aspects
,”
Ann. Otol. Rhinol. Laryngol.
99
,
679
683
.
23.
Hirano, M. (1991). “Phonosurgical analomy of the larynx,” in Phonosurgery: Assessment and Surgical Management of Voice Disorders, edited by C. N. Ford and D. M. Bless (Raven, New York).
24.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
25.
Kelemen
,
G.
(
1949
). “
Structure and performance in animal language
,”
Arch. Otolaryngol.
50
,
74
744
.
26.
Kelemen, G. (1969). “Anatomy of the larynx and the anatomical basis of vocal performance,” in The Chimpanzee, Vol. 1, edited by G. Bourne (Karger, Basel, Germany), pp. 165–187.
27.
Kohler, K. J. (1996). “Articulatory reduction in German spontaneous speech,” in Proceeding of the 4th Speech Prod. Seminar, Autrans, edited by P. Perrier (European Speech Communcation Assocation, Grenoble), pp. 1–4.
28.
Kurita, S., Nagata, K., and Hirano, M. (1983). “A comparative study of the layer structure of the vocal fold,” in Vocal Fold Physiology: Contemporary Research and Clinical Issues, edited by D. M. Bless and J. H. Abbs (College-Hill, San Diego).
29.
Lieberman
,
P.
(
1968
). “
Primate vocalization and human linguistic ability
,”
J. Acoust. Soc. Am.
44
,
1574
1584
.
30.
Lieberman, P., and Blumstein, S. E. (1988). Speech Physiology, Speech Perception, and Acoustic Phonetics (Cambridge U.P., Cambridge, UK).
31.
Lucero
,
J. C.
(
1993
). “
Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region
,”
J. Acoust. Soc. Am.
94
,
3104
3111
.
32.
Lucero
,
J. C.
(
1995
). “
The minimum lung pressure to sustain vocal fold oscillation
,”
J. Acoust. Soc. Am.
98
,
779
784
.
33.
Lucero, J. C. (1996). “Nonlinear dynamics of the vocal fold oscillation,” First ESCA Totorial and Research Workshop on Speech Production Modeling—4th Speech Production Seminar, pp. 185–188.
34.
Mazo, M., Erickson, D., and Harvey, T. (1995). “Emotion and expression: temporal data on voice quality in Russian lament,” in Vocal Fold Physiology, edited by O. Fujimura and M. Hirano (Singular, San Diego), pp. 173–178.
35.
Mende
,
W.
,
Herzel
,
H.
, and
Wermke
,
K.
(
1990
). “
Bifurcations and chaos in newborn cries
,”
Phys. Lett. A
145
,
418
424
.
36.
Mergell
,
P.
, and
Herzel
,
H.
(
1997
). “
Modelling biphonation—The role of the vocal tract
,”
Speech Commun.
22
,
141
154
.
37.
Mergell
,
P.
,
Herzel
,
H.
,
Wittenberg
,
Th.
,
Tigges
,
M.
, and
Eysholdt
,
U.
(
1998
). “
Phonation onset: Modeling and high speed clottography
,”
J. Acoust. Soc. Am.
104
,
467
470
.
38.
Morton
,
E. S.
(
1977
). “
On the occurrence and significance of motivation-structural rules in some birds and mammal sounds
,”
Am. Nat.
111
,
855
869
.
39.
Negus, V. E. (1940). The Comparative Anatomy and Physiology of the Larynx (Hafner, New York).
40.
Nowicki
,
S.
, and
Marler
,
P.
(
1988
). “
How do birds sing?
,”
Mus. Percep.
5
,
391
426
.
41.
Pressman
,
J.
, and
Kelemen
,
G.
(
1963
). “
Physiology of the larynx
,”
Physiol. Rev.
35
,
506
554
.
42.
Robb
,
J. B.
, and
Saxman
,
J.
(
1988
). “
Acoustic observations in young children’s vocalizations
,”
J. Acoust. Soc. Am.
83
,
1876
1882
.
43.
Sirviö
,
P.
, and
Michelsson
,
K.
(
1976
). “
Sound-spectrographic cry analysis of normal and abnormal newborn infants
,”
Folia Phoniatr.
28
,
161
173
.
44.
Schön-Ybarra, M. (1995). “A comparative approach to the nonhuman primate vocal tract: Implications for sound production,” in Frontiers in Primate Vocal Communication, edited by E. Zimmerman and J. D. Newman (Plenum, New York).
45.
Starck, D., and Schneider, R. (1960). “Respirationsorgane,” in Primatologia III/2, edited by H. Hofer, A. H. Schultz, and D. Starck (Karger, Basel).
46.
Steinecke
,
I.
, and
Herzel
,
H.
(
1995
). “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
,
1874
1884
.
47.
Stevens
,
K. N.
(
1977
). “
Physics of laryngeal behavior and larynx modes
,”
Phonetica
34
,
264
279
.
48.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
49.
Sundberg, J. (1987). The Science of the Singing Voice (Northern Illinois U.P., DeKalb, IL).
50.
Sundberg, J. (1991). The Science of Musical Sounds (Academic, New York).
51.
Suthers
,
R. A.
, and
Fattu
,
J. M.
(
1973
). “
Mechanisms of sound production in echolocating bats
,”
Am. Zool.
13
,
1215
1226
.
52.
Suthers, R. A. (1988). “The production of echolocation signals by bats and birds,” in Animal Sonar: Processes and Performance, edited by P. E. Nachtigall and P. W. B. Moore (Plenum, New York), pp. 23–45.
53.
Thomas, C. L. (1989). Taber’s Cyclopedic Medical Dictionary (Davis, Philadelphia.).
54.
Titze
,
I. R.
, and
Talkin
,
D. T.
(
1979
). “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
,
60
74
.
55.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1522
.
56.
Wendler, J., Seidner, W., Kittel, G., and Eysholdt, U. (1996). Lehrbuch der Phoniatric und Pädaudiologie (Georg Thieme, Stuttgart, New York).
57.
Wilden
,
I.
,
Herzel
,
H.
,
Peters
,
G.
, and
Tembrock
,
G.
(
1998
). “
Subharmonics, biphonation, and deterministic chaos in mammal vocalization
,”
Bioacoustics
9
,
171
196
.
This content is only available via PDF.
You do not currently have access to this content.