A method of generating in situ shock wave–inertial microbubble interaction by a modified electrohydraulic shock wave lithotripter is proposed and tested in vitro. An annular brass ellipsoidal reflector (thickness=28 mm) that can be mounted on the aperture rim of a Dornier XL-1 lithotripter was designed and fabricated. This ring reflector shares the same foci with the XL-1 reflector, but is 15 mm short in major axis. Thus, a small portion of the spherical shock wave, generated by a spark discharge at the first focus (F1) of the reflector, is reflected and diffracted by the ring reflector, producing a weak shock wave approximately 8.5 μs in front of the lithotripter pulse. Based on the configuration of the ring reflector (different combinations of six identical segments), the peak negative pressure of the preceding weak shock wave at the second focus (F2) can be adjusted from −0.96 to −1.91 MPa, at an output voltage of 25 kV. The preceding shock wave induces inertial microbubbles, most of which expand to a maximum size of 100–200 μm, with a few expanding up to 400 μm before being collapsed in situ by the ensuing lithotripter pulse. Physical characterizations utilizing polyvinylidene difluoride (PVDF) membrane hydrophone, high-speed shadowgraph imaging, and passive cavitation detection have shown strong secondary shock wave emission immediately following the propagating lithotripter shock front, and microjet formation along the wave propagation direction. Using the modified reflector, injury to mouse lymphoid cells is significantly increased at high exposure (up to 50% with shock number >100). With optimal pulse combination, the maximum efficiency of shock wave-induced membrane permeabilization can be enhanced substantially (up to 91%), achieved at a low exposure of 50 shocks. These results suggest that shock wave–inertial microbubble interaction may be used selectively to either enhance the efficiency of shock wave-mediated macromolecule delivery at low exposure or tissue destruction at high exposure.

1.
M.
Delius
, “
Medical applications and bioeffects of extracorporeal shock waves
,”
Shock Waves
4
,
55
72
(
1994
).
2.
N.
Weiss
,
M.
Delius
,
S.
Gambihler
,
P.
Dirschell
,
A.
Goetz
, and
W.
Brendel
, “
Influence of the shock wave application mode on the growth of A-Mel3 and SSK2 tumors in vivo
,”
Ultrasound Med. Biol.
16
,
595
(
1990
).
3.
R.
Schleberger
and
T.
Senge
, “
Non-invasive treatment of long-bone pseudarthrosis by shock waves (ESWL)
,”
Arch. Orthoped. Trauma Surg.
111
,
224
(
1992
).
4.
G. P. Dahmen, V. C. Nam, and L. Meiss, “Extrakorporale Stosswellentherapie (ESWT) zur Behandlung von knochennahen Weichteilscheerzen: Indikatin, technik und vorlaugigo Ergenbisse,” in Stosswellenlithotripsie—Aspekte und Prognosen, edited by C. Chaussy, F. Eisenberger, D. Jocham, and D. Wilbert (Attempto, Tubingen, 1993), pp. 143–148.
5.
F.
Prat
,
J. Y.
Chapelon
,
F.
Abou El Fadil
,
A.
Sibile
,
Y.
Theilliere
,
T.
Ponchon
, and
D.
Cathignol
, “
Focused liver ablation by cavitation in the rabbit: a potential new method of extracorporeal treatment
,”
Gut
35
,
395
400
(
1994
).
6.
S.
Gambihler
,
M.
Delius
, and
J. W.
Ellwart
, “
Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves
,”
J. Membr. Biol.
141
,
267
275
(
1994
).
7.
M.
Delius
,
P.
Hofschneider
,
U.
Lauer
, and
K.
Messmer
, “
Extracorporeal shock waves for gene therapy?
,”
Lancet
354
,
1377
(
1995
).
8.
R. F.
Randazzo
,
C. G.
Chaussy
,
G. J.
Fuchs
,
S. M.
Bhuta
,
H.
Lovrecovich
, and
J. B.
deKernion
, “
The in vitro and in vivo effects of extracorporeal shock waves on malignant cells
,”
Urol. Res.
16
,
419
(
1988
).
9.
R. P.
Holmes
,
L. I.
Yeaman
,
W. J.
Li
,
L. J.
Hart
,
C. A.
Wallen
,
R. D.
Woodruff
, and
D. L.
McCullough
, “
The combined effects of shock waves and cisplatin therapy on rat prostate tumors
,”
J. Urol. (Baltimore)
144
,
159
(
1990
).
10.
S.
Hoshi
,
S.
Orikasa
,
M.
Kuwahara
,
K.
Suzuki
,
S.
Shirai
,
K.
Yoshikawa
, and
M.
Nose
, “
Shock wave and THP-Adriamycin for treatment of rabbit’s bladder cancer
,”
Jpn. J. Cancer Res.
83
,
248
(
1992
).
11.
U.
Lauer
,
E.
Burgelt
,
Z.
Squire
,
K.
Messmer
,
P. H.
Hofschneider
,
M.
Gregor
, and
M.
Delius
, “
Shock wave permeabilization as a new gene transfer method
,”
Gene Ther.
4
,
710
715
(
1997
).
12.
S.
Bao
,
B. D.
Thrall
,
R. A.
Gies
, and
D. L.
Miller
, “
In vivo transfection of melanoma cells by lithotripter shock waves
,”
Cancer Res.
58
,
219
221
(
1998
).
13.
M.
Delius
, “
Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones
,”
Ultrasound Med. Biol.
23
,
611
617
(
1997
).
14.
A. J.
Coleman
and
J. E.
Saunders
, “
A survey of the acoustic output of commercial extracorporeal shock wave lithotripters
,”
Ultrasound Med. Biol.
15
,
213
227
(
1989
).
15.
C. C. Church and L. A. Crum, “A theoretical study of cavitation generated by four commercially available extracorporeal shock wave lithotripters,” in Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, edited by M. F. Mamilton and D. T. Blackstock (Elsevier, New York, 1990), pp. 433–438.
16.
C. C.
Church
, “
A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter
,”
J. Acoust. Soc. Am.
86
,
215
227
(
1989
).
17.
P.
Zhong
,
I.
Cioanta
,
F. H.
Cocks
, and
G. M.
Preminger
, “
Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy
,”
J. Acoust. Soc. Am.
101
,
2940
2950
(
1997
).
18.
A.
Philipp
,
M.
Delius
,
C.
Scheffczyk
,
A.
Vogel
, and
W.
Lauterborn
, “
Interaction of lithotripter-generated shock waves and air bubbles
,”
J. Acoust. Soc. Am.
93
,
2496
2509
(
1993
).
19.
D. L.
Miller
and
R. M.
Thomas
, “
Ultrasound contrast agents nucleate inertial cavitation in vitro
,”
Ultrasound Med. Biol.
21
,
1059
1065
(
1995
).
20.
F.
Prat
,
T.
Ponchon
,
F.
Berger
,
J. Y.
Chapelon
,
P.
Gagnon
, and
D.
Cathignol
, “
Hepatic lesions in the rabbit induced by acoustic cavitation
,”
Gastroenterology
100
,
1345
1350
(
1991
).
21.
D.
Dalecki
,
C. H.
Raeman
,
S. Z.
Child
,
D. P.
Penney
,
R.
Mayer
, and
E. L.
Carstensen
, “
The influence of contrast agents on hemorrhage produced by lithotripter fields
,”
Ultrasound Med. Biol.
23
,
1435
1439
(
1997
).
22.
M.
Delius
,
N.
Weiss
,
S.
Gambihler
,
A.
Goetz
, and
W.
Brendel
, “
Tumor therapy with shock waves requires modified lithotripter shock waves
,”
Naturwissenschaften
76
,
573
(
1989
).
23.
M.
Schafer
, “
Cost-effective shock wave hydrophones
,”
J. Stone Disease
5
,
73
76
(
1993
).
24.
Sonic Industries™, “Reference shockwave hydrophone system™—User’s Manual,” Version 1.2, Hatboro, PA, 1997.
25.
D.
Howard
and
B.
Sturtevant
, “
In vitro study of the mechanical effects of shock-wave lithotripsy
,”
Ultrasound Med. Biol.
23
,
1107
1122
(
1997
).
26.
T.
Christopher
, “
Modeling the Dornier HM3 lithotripter
,”
J. Acoust. Soc. Am.
96
,
3088
3095
(
1994
).
27.
M.
Mueller
, “
Dornier-Lithotripter im Vergleich. Vermessung der Stoßellenfelder und Fragmentationswirkungen. (Comparison of Dornier lithotripters. Measurements of shock wave fields and fragmentation effectiveness)
,”
Biomed. Technik
35
,
250
262
(
1990
).
28.
M.
Delius
,
F.
Ueberle
, and
W.
Eisenmenger
, “
Extracorporeal shock waves act by shock wave–gas bubble interaction
,”
Ultrasound Med. Biol.
24
,
1055
1059
(
1998
).
29.
A. J.
Coleman
,
M.
Whitlock
,
T.
Leighton
, and
J. E.
Saunders
, “
The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter
,”
Phys. Med. Biol.
38
,
1545
1560
(
1993
).
30.
B.
Sturtevant
and
V. A.
Kulkarny
, “
The focusing of weak shock waves
,”
J. Fluid Mech.
73
,
651
671
(
1976
).
31.
J. K.
Lee
,
J. D.
Black
,
E. A.
Repasky
,
R. T.
Kubo
, and
R. B.
Banbert
, “
Activation induces a rapid reorganization of spectrin in lymphocytes
,”
Cell
55
,
807
816
(
1988
).
32.
P.
Zhong
,
I.
Cioanta
,
S. L.
Zhu
,
F. H.
Cocks
, and
G. M.
Preminger
, “
Effects of tissue constraint on shock wave-induced bubble expansion in vivo
,”
J. Acoust. Soc. Am.
104
,
3126
3129
(
1998
).
33.
M.
Mueller
, “
Experimental investigations on focusing of weak spherical shock waves in water by shallow ellipsoidal reflectors
,”
Acustica
64
,
85
93
(
1987
).
34.
M. R. Bailey, “Control of acoustic cavitation with application to lithotripsy,” Ph.D. dissertation, Univ. of Texas at Austin, May 1997.
35.
M. T.
Carnell
,
S. J.
Barrington
, and
D. C.
Emmony
, “
A phase-inverting parabolic concentrator for the generation of negative waves in water
,”
J. Acoust. Soc. Am.
102
,
2556
2560
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.