Through an experimental approach, this paper explores the acoustic wave scattering processes involved in the acoustic backscattering from air-filled submerged cylindrical shells having axial discontinuity. The discontinuity is caused by lengthwise soldering along the tubes in the course of manufacture from flat sheets, and is represented as an internal axial mass layer. The tubes are excited by a plane wave at normal incidence. In the time domain, different echoes on short pulse responses (echo wave forms), are identified by the arrival times and related wave type. This enables the localization of additional wave generating sites and scattering centers due to the solder. A number of detected echo series are thus identified. In the frequency domain analysis, the influence of supplementary echoes and that of inter-echo interferences on both backscattering and resonance spectra is presented. The influence of the angular position of the solder, relative to the direction of the incident sound wave, on the amplitudes of spectra, is analyzed. The key phenomena in this study are wave generation at the solder when it is directly insonified (prevalent over classical wave generations of considered waves) and the wave type conversions observed when propagating waves encounter obstacles in the shell, geometric or material discontinuities (in this case the solder). The wave types studied are the A wave (Scholte–Stoneley) and the S0 compressional wave, in the midfrequency region, ka=25–90, where k=ω/C1 is the wave number in water, C1 is the sound velocity in water and a the external radius of the tube. This analysis of the influence of discontinuities in the propagation medium on the acoustic scattering is carried out with a view to the investigation of scattering of assembled objects such as cylindrical shells with hemispherical endcaps.

1.
D. C.
Gazis
, “
Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical Foundation
,”
J. Acoust. Soc. Am.
31
,
568
573
(
1959
).
2.
H.
Überall
,
L. R.
Dragonette
, and
L.
Flax
, “
Relation between creeping waves and normal modes of vibration of curved body
,”
J. Acoust. Soc. Am.
61
,
711
715
(
1977
).
3.
G.
Maze
,
J.
Ripoche
,
A.
Derem
, and
J. L.
Rousselot
, “
Diffusion d’une onde ultrasonore par des tubes remplis d’air immergés dans l’eau
,”
Acustica
55
,
69
85
(
1984
).
4.
L.
Flax
,
L. R.
Dragonette
, and
H.
Überall
, “
Theory of elastic resonance excitation by sound scattering
,”
J. Acoust. Soc. Am.
63
,
723
731
(
1978
).
5.
M.
de Billy
, “
Determination of the resonance spectrum of elastic bodies via the use of short pulses and Fourier transform theory
,”
J. Acoust. Soc. Am.
79
,
219
221
(
1986
).
6.
M.
Talmant
,
J-M.
Conoir
, and
J-L.
Rousselot
, “
High frequency scattering by shells
,”
Acta Acust.
3
,
509
515
(
1995
).
7.
J. H.
Heimann
and
H.
Kolsky
, “
The propagation of elastic waves in thin cylindrical shells
,”
J. Mech. Phys. Solids
14
,
121
130
(
1966
).
8.
J. L.
Rousselot
, “
Comportement acoustique d’un tube cylindrique mince en basse fréquence
,”
Acustica
58
,
291
297
(
1985
).
9.
B. K.
Sinha
,
T. J.
Plona
,
S.
Kostek
, and
S-K.
Chang
, “
Axisymmetric wave propagation in fluid-loaded cylindrical shells. I: Theory
,”
J. Acoust. Soc. Am.
92
,
1132
1273
(
1992
).
10.
R.
Briers
,
O.
Leroy
, and
G. N.
Shkerdin
, “
Conversion of a Stoneley wave at the extremity of a fluid loaded plate
,”
J. Acoust. Soc. Am.
101
,
1347
1357
(
1997
).
11.
R.
Briers
,
O.
Leroy
, and
G. N.
Shkerdin
, “
The generation of a Stoneley wave at the end of a fluid loaded plate by an incident bounded beam
,”
J. Acoust. Soc. Am.
101
,
1366
1372
(
1997
).
12.
R.
Briers
,
O.
Leroy
, and
G. N.
Shkerdin
, “
Influence of an inclusion on the phase of a Stoneley wave
,”
J. Acoust. Soc. Am.
101
,
1358
1365
(
1997
).
13.
A. Tinel, “Diffraction de l’onde de Scholte par un dièdre et par un réseau de stries,” Ph.D. thesis, Université Le Havre, France, 1991.
14.
M.
Ech-Cherif El-Kettani
,
P.
Pareige
,
F.
Luppé
, and
J.
Ripoche
, “
Experimental study of the conversion of Lamb waves at the end of an immersed plate
,”
Acust. Acta Acust.
82
,
251
259
(
1996
).
15.
M. Ech-Cherif El-Kettani, P. Pareige, and F. Luppé, “Conversion de modes de Lamb à l’extrémité d’une plaque immergée,” 3ème Congrès Français d’Acoustique, J. de Phy. IV, Colloque No. 5, Suppl. JP III, No. 5, 1994, pp. 873–876.
16.
J. J.
Ditri
, “
Some results on the scattering of guided elastic SH waves from material and geometric waveguide discontinuities
,”
J. Acoust. Soc. Am.
100
,
3078
3087
(
1996
).
17.
A. Tinel, H. Duflo, and J. Duclos, “Onde de type Scholte sur une plaque fine. Interaction avec un défaut de surface,” 4ème Congrès Français d’Acoustique, Marseille, France, Congress Proceedings, 1997, pp. 889–892.
18.
J. E.
Bondaryk
and
H.
Schmidt
, “
Array processing for the analysis of stiffened, fluid loaded, cylindrical shells
,”
J. Acoust. Soc. Am.
97
,
1067
1077
(
1995
).
19.
I-Tai
Lu
, “
A hybrid ray-mode (wavefront-resonance) approach for analyzing acoustic radiation and scattering by submerged structures
,”
J. Acoust. Soc. Am.
99
,
114
132
(
1996
).
20.
M. L.
Rumerman
, “
Contribution of membrane wave reradiation to scattering from finite cylindrical steel shells in water
,”
J. Acoust. Soc. Am.
93
,
55
65
(
1993
).
21.
S. F.
Morse
,
P. L.
Marston
, and
G.
Kaduchak
, “
High-frequency backscattering enhancements by thick finite cylindrical shells in water at oblique incidence: Experiments, interpretation, and calculations
,”
J. Acoust. Soc. Am.
103
,
785
794
(
1998
).
22.
A.
Klauson
,
J.
Metsaveer
,
D.
Décultot
,
G.
Maze
, and
J.
Ripoche
, “
Identification of the resonances of the cylindrical shell stiffened by an internal lengthwise rib
,”
J. Acoust. Soc. Am.
100
,
3135
3143
(
1996
).
23.
A. Klauson, J. Metsaveer, D. Décultot, G. Maze, and J. Ripoche, “Sound scattering by a fluid-loaded cylindrical shell with an internal axial stiffener,” Acoustic Interactions With Submerged Elastic Structures, edited by A Guran, J. Ripoche, and F. Ziegler (World Scientific, Singapore, 1996), Pt. I, pp. 242–274.
24.
B.
Dubus
,
A.
Lavie
,
D.
Décultot
, and
G.
Maze
, “
Elastic scattering by a thin cylindrical shell bounded by hemispherical endcaps at various incidence
,”
J. Acoust. Soc. Am.
92
,
2473
(
1992
).
25.
J. Chiumia, E. H. Aassif, N. Touraine, D. Décultot, and G. Maze, “Acoustic scattering from a cylindrical shell bounded by two hemispherical endcaps: Case of axial incidence,” 4ème Congrès Français d’Acoustique, Marseille, France, Conference Proceedings, 1997, pp. 14–18.
26.
P.
Pareige
,
P.
Rembert
,
J. L.
Izbicki
,
G.
Maze
, and
J.
Ripoche
, “
Méthode impulsionnelle numérisée (MIN) pour l’Isolement et l’Identification des Résonances de tubes immergés
,”
Phys. Lett. A
135
,
143
146
(
1989
).
27.
C. W.
Horton
, Sr.
and
M. V.
Mechler
, “
Circumferential Waves in a Thin-Walled Air-Filled Cylinder in a Water Medium
,”
J. Acoust. Soc. Am.
51
,
295
303
(
1972
).
28.
G.
Maze
and
J.
Ripoche
, “
Méthode d’Isolement et d’Identification des Résonances (M.I.I.R.) de cylindres et de tubes soumis à une onde acoustique plane dans l’eau
,”
Rev. Phys. Appl.
18
,
319
326
(
1983
).
29.
G.
Maze
, “
Acoustic scattering from submerged cylinders. MIIR Im/Re: Experimental and theoretical study
,”
J. Acoust. Soc. Am.
89
,
2559
2566
(
1991
).
30.
H. Überall, “Surface waves in acoustics,” in Physical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic, New York, 1973), Vol. 10, pp. 1–60.
31.
J. Chiumia, D. Décultot, G. Maze, A. Klauson, and J. Metsaveer, “Analysis of echoes on the time domain backscattered signal from cylindrical shells with axial inhomogeneity,” 4th International Congress on Sound and Vibration, St. Petersburg, Russia, Conference Proceedings, 1996, pp. 139–146.
32.
M.
Talmant
,
J.-L.
Izbicki
,
G.
Maze
,
G.
Quentin
, and
J.
Ripoche
, “
External wave resonances on thin cylindrical shells
,”
J. Acoust.
4
,
509
523
(
1991
).
33.
G.
Maze
,
F.
Léon
,
J.
Ripoche
,
A.
Klauson
, and
J.
Metsaveer
, “
Nature de l’onde d’interface de Scholte sur une coque cylindrique
,”
Acustica
81
,
201
213
(
1995
).
34.
B.
Clotteau
,
J-M.
Conoir
,
J. L.
Rousselot
, and
A.
Derem
, “
Ondes de Franz et onde de Stoneley généralisées pour un cylindre élastique immergé
,”
J. Acoust.
3
,
213
242
(
1990
).
35.
J. L.
Izbicki
,
J. L.
Rousselot
,
A.
Gérard
,
G.
Maze
, and
J.
Ripoche
, “
Analysis of resonances related to Scholte-Stoneley waves around circular cylindrical shells
,”
J. Acoust. Soc. Am.
90
,
2602
2608
(
1991
).
36.
P. L.
Marston
and
N. H.
Sun
, “
Backscattering near the coincidence frequency of a thin cylindrical shell: Surface wave properties from elasticity theory and an approximate ray synthesis
,”
J. Acoust. Soc. Am.
97
,
777
783
(
1995
).
37.
L. G.
Zhang
,
N. H.
Sun
, and
P. L.
Marston
, “
Midfrequency enhancement of the backscattering of tone bursts by thin spherical shells
,”
J. Acoust. Soc. Am.
91
,
1862
1874
(
1992
).
38.
P.
Pareige
,
G.
Maze
,
J. L.
Izbicki
,
J.
Ripoche
, and
J. L.
Rousselot
, “
Internal acoustic excitation of shells: Scholte and whispering gallery-type waves
,”
J. Appl. Phys.
65
,
2636
2644
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.