In order to better understand the mechanics of tympanic membrane (TM) transduction at frequencies above a few kHz, the middle-ear (ME) impedance measured near the tympanic membrane is studied for three anesthetized cat ears after widely opening the ME cavities (MEC). Three conditions were measured: intact ossicles, drained cochlea, and disarticulated stapes. When the cochlear load is removed from the ME by disarticulating the stapes, the impedance magnitude varies by about ±25 dB in the 5- to 30-kHz range, with peaks and valleys at intervals of ≈5 kHz. These measurements suggest middle-ear standing waves. It is argued that these standing waves reside in the TM. In contrast, the magnitude of the impedance for the intact case varies by less than ±10 dB, indicating that for this case the standing waves are damped by the cochlear load. Since the measurements were made within 2 mm of the TM, standing waves in the ear canal can be ruled out at these frequencies. Although the ME cavities were widely opened, reflections from the ME cavity walls or surrounding structures could conceivably result in standing waves. However, this possibility is ruled out by model predictions showing that such large standing waves in the ME cavity space would also be present in the intact case, in disagreement with the observation that standing waves are damped by cochlear loading. As a first-order approximation, the standing waves are modeled by representing the TM as a lossless transmission line with a frequency-independent delay of 36 μs. The delay was estimated by converting the impedance data to reflectance and analyzing the reflectance group delay. In the model the ossicles are represented as lumped-parameter elements. In contrast to previous models, the distributed and lumped parameter model of the ME is consistent with the measured impedance for all three conditions in the 200-Hz to 30-kHz region. Also in contrast with previous models, the ear-canal impedance is not mass dominated for frequencies above a few kHz. Finally, the present model is shown to be consistent, at high frequencies, with widely accepted transfer functions between (i) the stapes displacement and ear-canal pressure, (ii) the vestibule pressure and ear-canal pressure, and (iii) the umbo velocity and ear-canal volume velocity. An improved understanding of TM mechanics is important to improve hearing aid transducer design, ear-plug design, as well as otoacoustic emissions research.

1.
Allen
,
J. B.
(
1983
). “
Magnitude and phase-frequency response to single tones in the auditory nerve
,”
J. Acoust. Soc. Am.
73
(
6
),
2071
2092
.
2.
Allen, J. B. (1986). “Measurement of eardrum acoustic impedance,” in Peripheral Auditory Mechanisms, edited by J. B. Allen, J. L. Hall, A. Hubbard, S. T. Neely, and A. Tubis (Springer-Verlag, New York), pp. 44–51.
3.
Békésy, G. (1960). Experiments in Hearing (McGraw-Hill, New York).
4.
Beranek, L. L. (1954). Acoustics (McGraw-Hill, New York).
5.
Carlin, H. J., and Giordano, A. B. (1964). Network Theory—An Introduction to Reciprocal and Nonreciprocal Circuits (Prentice-Hall, Englewood Cliffs, NJ).
6.
Dallos
,
P.
(
1970
). “
Low-frequency auditory characteristics: Species dependence
,”
J. Acoust. Soc. Am.
48
,
489
499
.
7.
Dallos, P. (1974). “Comments,” in Facts and Models in Hearing, edited by E. Zwicker and E. Terhardt (Springer-Verlag, New York), p. 54.
8.
Décory, L. (1989). “Origins of interspecific differences in susceptibility to noise,” Ph.D. thesis, The University of Bordeaux II.
9.
Flanagan
,
J. L.
(
1962
). “
Computational model for basilar-membrane displacement
,”
J. Acoust. Soc. Am.
34
,
1370
1376
.
10.
Funnell
,
W. R. J.
(
1983
). “
On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum
,”
J. Acoust. Soc. Am.
73
,
1657
1661
.
11.
Funnell
,
W. R. J.
, and
Laszlo
,
C. A.
(
1978
). “
Modeling of the cat eardrum as a thin shell using the finite-element method
,”
J. Acoust. Soc. Am.
63
,
1461
1466
.
12.
Funnell
,
W. R. J.
,
Decraemer
,
W. F.
, and
Khanna
,
S. M.
(
1987
). “
On the damped frequency response of a finite-element model of the cat eardrum
,”
J. Acoust. Soc. Am.
81
,
1851
1859
.
13.
Giacoletto, L. J. (1977). Electronic Designers’ Handbook (McGraw-Hill, New York), 2nd ed.
14.
Goode
,
R.
,
Killion
,
M.
,
Nakamura
,
K.
, and
Nishihara
,
S.
(
1994
). “
New knowledge about the function of the human middle-ear: development of an improved analog model
,”
Am. J. Otolaryngol.
15
(
2
),
145
154
.
15.
Guinan
,
J.
, and
Peake
,
W. T.
(
1967
). “
Middle-ear characteristics of anesthetized cats
,”
J. Acoust. Soc. Am.
41
,
1237
1261
.
16.
Huang
,
G. T.
,
Rosowski
,
J. J.
,
Flandermeyer
,
D. T.
,
Lynch
,
T. J.
, III
, and
Peake
,
W. T.
(
1997
). “
The middle ear of a lion: Comparison of structure and function to domestic cat
,”
J. Acoust. Soc. Am.
101
,
1532
1549
.
17.
Keefe
,
D. H.
,
Ling
,
R.
, and
Bulen
,
J. C.
(
1992
). “
Method to measure acoustic impedance and reflection coefficient
,”
J. Acoust. Soc. Am.
91
,
470
485
.
18.
Keefe
,
D. H.
,
Bulen
,
J. C.
,
Arenhart
,
K. H.
, and
Burns
,
E. M.
(
1993
). “
Method to measure acoustic impedance and reflection coefficient
,”
J. Acoust. Soc. Am.
94
,
2617
2638
.
19.
Khanna
,
S. M.
, and
Tonndorf
,
J.
(
1972
). “
Tympanic membrane vibrations in cats studied by time-averaged holography
,”
J. Acoust. Soc. Am.
51
,
1904
1920
.
20.
Kringlebotn
,
M.
(
1988
). “
Network model for the human middle ear
,”
Scand. Audiol.
17
,
75
85
. Lync
21.
h, T. J. (1981). “Signal processing by the cat middle ear: Admittance and transmission, measurements and models,” Ph.D. thesis, MIT.
22.
Lynch
,
T. J.
,
Nedzelnitsky
,
V.
, and
Peake
,
W. T.
(
1982
). “
Input impedance of the cochlea in cat
,”
J. Acoust. Soc. Am.
72
,
108
130
.
23.
Lynch
,
T. J.
,
Peake
,
W. T.
, and
Rosowski
,
J. J.
(
1994
). “
Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz
,”
J. Acoust. Soc. Am.
96
,
2184
2209
.
24.
Matthews, J. W. (1983). Modeling Reverse Middle Ear Transmission of Acoustic Distortion Signals (Delft U.P., Delft, The Netherlands), pp. 11–18.
25.
Mo/ller
,
A. R.
(
1965
). “
An experimental study of the acoustic impedance of the middle ear and its transmission properties
,”
Acta Oto-Laryngol.
60
,
129
149
.
26.
Mo/ller, A. R. (1983). Auditory Physiology (Academic, New York).
27.
Nedzelnitsky, V. (1974). “Measurements of sound pressure in the cochleae of anesthetized cats,” in Facts and Models in Hearing, edited by E. Zwicker and E. Terhardt (Springer Verlag, New York), pp. 45–53.
28.
Nedzelnitsky
,
V.
(
1980
). “
Sound pressures in the basal turn of the cat cochlea
,”
J. Acoust. Soc. Am.
68
,
1676
1689
.
29.
Nuttall
,
A. L.
(
1974
). “
Measurements of the guinea-pig middle-ear transfer characteristic
,”
J. Acoust. Soc. Am.
56
,
1231
1238
.
30.
Olson
,
E. S.
(
1998
). “
Observing middle and inner ear mechanics with novel intracochlear pressure sensors
,”
J. Acoust. Soc. Am.
103
,
3445
3463
.
31.
Onchi
,
Y.
(
1961
). “
Mechanism of the middle ear
,”
J. Acoust. Soc. Am.
33
,
794
805
.
32.
Papoulis, A. (1962). The Fourier Integral and its Applications (McGraw–Hill, New York).
33.
Peake, W., and Guinan, J. (1967). “Circuit model for the cat’s middle ear,” MIT Research Laboratory of Electronics, Quarterly Prog. Rep. No. 84, 320–326.
34.
Puria
,
S.
(
1991a
). “
A physical model for the middle-ear cavity
,”
J. Acoust. Soc. Am.
89
,
1864
.
35.
Puria, S. (1991b). A theory of cochlear input impedance and middle ear parameter estimation, Ph.D. thesis, The City College, CUNY.
36.
Puria
,
S.
, and
Allen
,
J. B.
(
1989
). “
Impedance measurements in the ear canal
,”
J. Acoust. Soc. Am.
86
,
S44
.
37.
Puria
,
S.
, and
Allen
,
J. B.
(
1991
). “
A parametric study of cochlear input impedance
,”
J. Acoust. Soc. Am.
89
,
287
309
.
38.
Puria
,
S.
, and
Allen
,
J. B.
(
1992
). “
SYSid—audio-band measurement and analysis system
,”
J. Acoust. Soc. Am.
92
,
2469
.
39.
Puria, S., and Allen, J. B. (1994). Unpublished observations.
40.
Puria, S., and Allen, J. B. (1996). “Cat middle-ear measurements and model: Evidence of acoustic delay in the tympanic membrane,” Assn. for Research in Oto-Laryngology Abstracts.
41.
Puria
,
S.
,
Peake
,
W.
, and
Rosowski
,
J.
(
1997
). “
Sound-pressure measurements in the cochlear vestibule of human-cadaver ears
,”
J. Acoust. Soc. Am.
101
,
1
17
.
42.
Puria, S., Rosowski, J. J., and Peake, W. (1993). “Middle-ear pressure gain in humans: preliminary results,” in Biophysics of Hair Cell Sensory Systems, edited by H. Duifhuis, J. Horst, P. van Dijk, and S. van Netten (World Scientific, Singapore), pp. 345–351.
43.
Rabbitt
,
R. D.
, and
Holmes
,
M. H.
(
1986
). “
A fibrous dynamic continuum model of the tympanic membrane
,”
J. Acoust. Soc. Am.
80
,
1716
1728
.
44.
Rabbitt
,
R. D.
, and
Holmes
,
M. H.
(
1988
). “
Three-dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane
,”
J. Acoust. Soc. Am.
83
(
3
),
1064
1080
.
45.
Shaw
,
E. A. G.
(
1977
). “
Eardrum representation in middle-ear acoustical networks
,”
J. Acoust. Soc. Am.
62
,
E5
.
46.
Shaw
,
E. A. G.
, and
Stinson
,
M. R.
(
1981
). “
Network concepts and energy flow in the human middle ear
,”
J. Acoust. Soc. Am.
69
,
S44
.
47.
Shaw, E. A. G., and Stinson, M. R. (1983). The Human External and Middle Ear: Models and Concepts (Delft U.P., Delft, The Netherlands), pp. 3–10.
48.
Shera
,
C. A.
, and
Zweig
,
G.
(
1991
). “
Phenomenological characterization of eardrum transduction
,”
J. Acoust. Soc. Am.
90
,
253
262
.
49.
Shera
,
C. A.
, and
Zweig
,
G.
(
1993
). “
Noninvasive measurement of the cochlear traveling-wave ratio
,”
J. Acoust. Soc. Am.
93
,
3333
3352
.
50.
Siebert, W. T. (1970). “Simple model of the impedance matching properties of the external ear,” MIT Research Laboratory of Electronics, Quarterly Prog. Rep. No. 96, 236–242.
51.
Stinson
,
M. R.
, and
Khanna
,
S. M.
(
1994
). “
Spatial distribution of sound pressure and energy flow in the ear canals of cats
,”
J. Acoust. Soc. Am.
96
,
170
180
.
52.
Tonndorf
,
J.
, and
Pastaci
,
H.
(
1986
). “
Middle ear sound transmission: A field of early interest to Merle Lawrence
,”
Am. J. Otolaryngol.
7
,
120
129
.
53.
Voss
,
S. E.
, and
Allen
,
J. B.
(
1994
). “
Measurement of acoustic impedance and reflectance in the human ear canal
,”
J. Acoust. Soc. Am.
95
,
372
384
.
54.
Wada
,
H.
,
Metoki
,
T.
, and
Kobayashi
,
T.
(
1992
). “
Analysis of dynamic behavior of human middle ear using a finite-element method
,”
J. Acoust. Soc. Am.
92
,
3157
3168
.
55.
Wever
,
E. G.
, and
Lawrence
,
M.
(
1950
). “
The acoustic pathways to the cochlea
,”
J. Acoust. Soc. Am.
22
,
460
467
.
56.
Wever, E. G., and Lawrence, M. (1954). Physiological Acoustics (Princeton U.P., Princeton, NJ).
57.
Zwislocki
,
J.
(
1962
). “
Analysis of the middle-ear function. Part I: Input impedance
,”
J. Acoust. Soc. Am.
34
,
1514
1523
.
58.
Zwislocki
,
J.
(
1963
). “
Analysis of the middle-ear function. Part II: Guinea-pig ear
,”
J. Acoust. Soc. Am.
35
,
1034
1040
.
This content is only available via PDF.
You do not currently have access to this content.