Nowadays, it is widely believed that the temporal structure of the auditory nerve fibers’ response to sound stimuli plays an important role in auditory perception. An influential hypothesis is that information is extracted from this temporal structure by neural operations akin to an autocorrelation algorithm. The goal of the present work was to test this hypothesis. The stimuli consisted of sequences of unipolar clicks that were high-pass filtered and mixed with low-pass noise so as to exclude spectral cues. In experiment 1, “interfering” clicks were inserted in an otherwise periodic (isochronous) click sequence. Each click belonging to the periodic sequence was followed, after a random portion of the period, by one interfering click. This disrupted the detection of temporal regularity, even when the interfering clicks were 5 dB less intense than the periodic clicks. Experiments 2–4 used click sequences that showed a single peak in their autocorrelation functions. For some sequences, this peak originated from “first-order” temporal regularities, that is from the temporal relations between consecutive clicks. For other sequences, the peak originated instead from “second-order” regularities, relative to nonconsecutive clicks. The detection of second-order regularities appeared to be much more difficult than the detection of comparable first-order regularities. Overall, these results do not tally with the current autocorrelation models of temporal processing. They suggest that the extraction of temporal information from a group of closely spaced spectral components makes no use of time intervals between nonconsecutive peaks of the amplitude envelope.

1.
Assmann
,
P. F.
, and
Summerfield
,
Q.
(
1990
). “
Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
88
,
680
697
.
2.
Burns
,
E. M.
, and
Viemeister
,
N. F.
(
1976
). “
Nonspectral pitch
,”
J. Acoust. Soc. Am.
60
,
863
869
.
3.
Burns
,
E. M.
, and
Viemeister
,
N. F.
(
1981
). “
Played-again SAM: Further observations on the pitch of amplitude-modulated noise
,”
J. Acoust. Soc. Am.
70
,
1655
1660
.
4.
Cariani
,
P. A.
, and
Delgutte
,
B.
(
1996a
). “
Neural correlates of the pitch of complex tones. I. Pitch and pitch salience
,”
J. Neurophysiol.
76
,
1698
1716
.
5.
Cariani
,
P. A.
, and
Delgutte
,
B.
(
1996b
). “
Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, rate-pitch, and the dominance region of pitch
,”
J. Neurophysiol.
76
,
1717
1734
.
6.
Carlyon
,
R. P.
(
1996
). “
Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlapping masker
,”
J. Acoust. Soc. Am.
99
,
517
524
.
7.
Carlyon
,
R. P.
, and
Shackleton
,
T. M.
(
1994
). “
Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms?
J. Acoust. Soc. Am.
95
,
3541
3554
.
8.
de Cheveigné
,
A.
(
1993
). “
Separation of concurrent harmonics sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory processing
,”
J. Acoust. Soc. Am.
93
,
3271
3290
.
9.
de Cheveigné
,
A.
(
1998
). “
Cancellation model of pitch perception
,”
J. Acoust. Soc. Am.
103
,
1261
1271
.
10.
de Ribaupierre
,
F.
,
Goldstein
, Jr.,
M. H.
, and
Yeni-Komshian
,
G.
(
1972
). “
Cortical coding of repetitive acoustic pulses
,”
Brain Res.
48
,
205
225
.
11.
Evans
,
E. F.
(
1978
). “
Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons
,”
Audiology
17
,
369
420
.
12.
Goldstein
,
J. L.
(
1973
). “
An optimum processor theory for the central formation of the pitch of complex tones
,”
J. Acoust. Soc. Am.
54
,
1496
1516
.
13.
Goldstein, J. L., and Srulovicz, P. (1977). “Auditory-nerve spike intervals as an adequate basis for aural frequency measurement,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, London).
14.
Hartmann
,
W. M.
(
1993
). “
On the origin of the enlarged melodic octave
,”
J. Acoust. Soc. Am.
93
,
3400
3409
.
15.
Hartmann, W. M. (1997). Signals, Sound, and Sensation (AIP Press, Woodbury, NY).
16.
Hoekstra, A. (1979). “Frequency discrimination and frequency analysis in hearing,” Doctoral dissertation, University of Groningen, The Netherlands.
17.
Horst
,
J. W.
,
Javel
,
E.
, and
Farley
,
G. R.
(
1986
). “
Coding of spectral fine structure in the auditory nerve. I. Fourier analysis of period and interspike interval histograms
,”
J. Acoust. Soc. Am.
79
,
398
416
.
18.
Houtsma
,
A. J. M.
, and
Smurzynski
,
J.
(
1990
). “
Pitch identification and discrimination for complex tones with many harmonics
,”
J. Acoust. Soc. Am.
87
,
304
310
.
19.
Kaernbach
,
C.
(
1991
). “
Simple adaptive testing with the weighted up-down method
,”
Percept. Psychophys.
49
,
227
229
.
20.
Kaernbach, C., and Mohlberg, H. (1994). “A neural sequence-learning model to explain auditory periodicity analysis,” in Proceedings of the 1994 International Congress on Artificial Neural Networks, Sorrento, Italy, edited by M. Marinaro and P. G. Morasso (Springer-Verlag, New York).
21.
Kiang, N. Y. S., Watanabe, T., Thomas, E. C., and Clark, L. F. (1965). “Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve,” Res. Monogr. 35 (MIT, Cambridge, MA).
22.
Langner
,
G.
(
1992
). “
Periodicity coding in the auditory system
,”
Hearing Res.
60
,
115
142
.
23.
Langner
,
G.
,
Sams
,
M.
,
Heil
,
P.
, and
Schulze
,
H.
(
1997
). “
Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography
,”
J. Comp. Physiol. A
181
,
665
676
.
24.
Lazzaro
,
J.
, and
Mead
,
C.
(
1989
). “
Silicon modeling of pitch perception
,”
Proc. Natl. Acad. Sci. USA
86
,
9597
9601
.
25.
Licklider
,
J. C. R.
(
1951
). “
A duplex theory of pitch perception
,”
Experientia
7
,
128
134
.
26.
Lyon, R. F. (1984). “Computational models of neural auditory processing,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 36.1 (IEEE, New York), pp. 1–4.
27.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1991
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification
,”
J. Acoust. Soc. Am.
89
,
2866
2882
.
28.
Moore, B. C. J. (1977). “Effects of relative phase of the components on the pitch of three-component complex tones,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, London).
29.
Moore, B. C. J. (1997). An Introduction to the Psychology of Hearing (Academic, London), 4th ed.
30.
Moore
,
B. C. J.
, and
Rosen
,
S. M.
(
1979
). “
Tune recognition with reduced pitch and interval information
,”
Q. J. Exp. Physiol.
31
,
229
240
.
31.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Peters
,
R. W.
(
1985
). “
Relative dominance of individual partials in determining the pitch of complex tones
,”
J. Acoust. Soc. Am.
77
,
1853
1860
.
32.
Ohgushi
,
K.
(
1978
). “
On the role of spatial and temporal cues in the perception of the pitch of complex tones
,”
J. Acoust. Soc. Am.
64
,
764
771
.
33.
Pantev
,
C.
,
Hoke
,
M.
,
Lütkenhöner
,
B.
, and
Lehnertz
,
K.
(
1989
). “
Tonotopic organization of the auditory cortex: Pitch versus frequency representation
,”
Science
246
,
486
488
.
34.
Patterson
,
R. D.
,
Allerhand
,
M. H.
, and
Giguère
,
C.
(
1995
). “
Time-domain modeling of auditory processing: A modular architecture and a software platform
,”
J. Acoust. Soc. Am.
98
,
1890
1894
.
35.
Patterson
,
R. D.
,
Handel
,
S.
,
Yost
,
W. A.
, and
Datta
,
A. J.
(
1996
). “
The relative strength of the tone and noise components in iterated rippled noise
,”
J. Acoust. Soc. Am.
100
,
3286
3294
.
36.
Patterson, R. D., Robinson, K., Holdsworth, J. W., McKeown, D., Zhang, C., and Allerhand, M. (1992). “Complex sounds and auditory images,” in Auditory Physiology and Perception, edited by Y. Cazals, L. Demany, and K. Horner (Pergamon, Oxford).
37.
Plomp
,
R.
(
1967
). “
Pitch of complex tones
,”
J. Acoust. Soc. Am.
41
,
1526
1533
.
38.
Plomp, R. (1976). Aspects of Tone Sensation (Academic, London).
39.
Ritsma
,
R. J.
(
1967
). “
Frequencies dominant in the perception of the pitch of complex tones
,”
J. Acoust. Soc. Am.
42
,
191
198
.
40.
Ruggero, M. A. (1992). “Physiology and coding of sound in the auditory nerve,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A. N. Popper and R. R. Fay (Springer-Verlag, New York).
41.
Sachs
,
M. B.
, and
Young
,
E. D.
(
1980
). “
Effects of nonlinearities on speech encoding in the auditory nerve
,”
J. Acoust. Soc. Am.
68
,
858
875
.
42.
Slaney, M., and Lyon, R. F. (1990). “A perceptual pitch detector,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, New Mexico (IEEE, New York), pp. 357–360.
43.
Srulovicz
,
P.
, and
Goldstein
,
J. L.
(
1983
). “
A central spectrum model: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum
,”
J. Acoust. Soc. Am.
73
,
1266
1276
.
44.
Steinschneider
,
M.
,
Arezzo
,
J.
, and
Vaughan
, Jr.,
H. G.
(
1980
). “
Phase-locked cortical responses to a human speech sound and low-frequency tones in the monkey
,”
Brain Res.
198
,
75
84
.
45.
Terhardt
,
E.
(
1972
). “
Zur Tonhöhenwahrnehmung von Klängen. II. Ein Funktionsschema
,”
Acustica
26
,
187
199
.
46.
Tsuzaki, M., and Patterson, R. (1998). “Jitter detection: a brief review and some new experiments,” in Psychophysical and Physiological Advances in Hearing, edited by A. R. Palmer, A. Rees, A. Q. Summerfield, and R. Meddis (Whurr, London), pp. 546–552.
47.
van Noorden, L. (1982). “Two channel pitch perception,” in Music, Mind and Brain, edited by M. Clynes (Plenum, New York).
48.
Yost
,
W. A.
(
1996
). “
Pitch of iterated rippled noise
,”
J. Acoust. Soc. Am.
100
,
511
518
.
49.
Yost
,
W. A.
,
Patterson
,
R. D.
, and
Sheft
,
S.
(
1996
). “
A time domain description for the pitch strength of iterated rippled noise
,”
J. Acoust. Soc. Am.
99
,
1066
1078
.
This content is only available via PDF.
You do not currently have access to this content.