A broadband ultrasonic measurement system has been utilized to characterize the concentration and frequency dependence of in vitro suspensions of Albunex® microspheres at concentrations ranging from 1.7×105 to 2.1×107microspheres/mL and over a bandwidth of 1–16 MHz. The apparent backscattered power (not compensated for effects due to attenuation) was shown to increase with dose for lower concentrations of microspheres, but then to decrease rapidly with increasing concentration where attenuation effects become significant. Measurements of signal loss demonstrated that the attenuation grew exponentially with increasing concentration, so that a doubling of the number of microspheres led to a doubling of the value of the attenuation coefficient measured in dB/cm. This relationship was demonstrated over the entire system bandwidth. Compensation of the apparent backscattered power for the attenuation yielded the backscatter transfer function. This quantity was shown to be linearly proportional to concentration, so that a doubling of the number of microspheres led to a 3-dB increase in the backscatter transfer function. A broadband data reduction technique was used to further reduce the data to backscatter coefficient, an absolute parameter describing the intrinsic scattering efficiency of the Albunex® microsphere suspensions. The backscatter coefficient was shown to be linearly proportional to microsphere concentration at all concentrations investigated and over all the usable bandwidth. This suggests that, with appropriate compensation for attenuation and equipment parameters, perfusion or flow quantification techniques which assume a linear dependence of backscatter with contrast agent concentration should be applicable. The backscatter coefficient exhibits a rapid rise with frequency below 3 MHz, and appears to approach a frequency independent limit above 3 MHz. The relationships of the attenuation coefficient and backscatter transfer function to concentration were generally consistent with predictions from a simple scattering model. These relationships appear to be valid within the usable bandwidth of our measurement system for all concentrations investigated.

1.
M. J.
Monaghan
,
J. M.
Metcalfe
,
S.
Odunlami
, and
D. E.
Jewitt
, “
Myocardial contrast echocardiography: Applications of digital ultrasound data acquisition and processing
,”
Am. J. Card. Imaging
5
,
237
249
(
1991
).
2.
M. J.
Monaghan
,
J. M.
Metcalfe
,
S.
Odunlami
,
A.
Waaler
, and
D. E.
Jewitt
, “
Digital radiofrequency echocardiography in the detection of myocardial contrast following intravenous administration of Albunex®,
European Heart Journal
14
,
1200
1209
(
1993
).
3.
B.
Wilson
,
K. K.
Shung
,
B.
Hete
,
H.
Levene
, and
J. L.
Barnhart
, “
A feasibility study on quantitating myocardial perfusion with Albunex®, an ultrasonic contrast agent
,”
Ultrasound Med. Biol.
19
,
181
191
(
1993
).
4.
S. H.
Wang
,
P. H.
Chang
,
K. K.
Shung
, and
H. B.
Levene
, “
Some considerations on the measurements of mean frequency shift and integrated backscatter following administration of Albunex®,
Ultrasound Med. Biol.
22
,
441
451
(
1996
).
5.
H. J.
Bleeker
,
K. K.
Shung
, and
J. L.
Barnhart
, “
Ultrasonic characterization of Albunex®, a new contrast agent
,”
J. Acoust. Soc. Am.
87
,
1792
1797
(
1990
).
6.
H. J.
Bleeker
,
K. K.
Shung
, and
J. L.
Barnhart
, “
On the application of ultrasonic contrast agents for blood flowmetry and assessment of cardiac perfusion
,”
J. Ultrasound Med.
9
,
461
471
(
1990
).
7.
P. H. Chang and K. K. Shung, “Attenuation and backscatter measurements on Albunex,” IEEE Ultrasonics Symposium Proceedings, Baltimore, MD, 1993 (IEEE, New York, 1993), 93CH3301-9, pp. 913–916.
8.
N.
de Jong
and
L.
Hoff
, “
Ultrasound scattering properties of Albunex microspheres
,”
Ultrasonics
31
,
175
181
(
1993
).
9.
S.
Holm
,
M.
Myhrum
, and
L.
Hoff
, “
Modelling of the ultrasound return from Albunex microspheres
,”
Ultrasonics
32
,
123
130
(
1994
).
10.
P. A.
Heidenreich
,
J. G.
Wiencek
,
J. G.
Zaroff
,
S.
Aronson
,
L. J.
Segil
,
P. V.
Harper
, and
S. B.
Feinstein
, “
In Vitro Calculation of Flow by Use of Contrast Ultrasonography
,”
Journal of the American Society of Echocardiography
6
,
51
61
(
1993
).
11.
C. M.
Seghal
and
P. H.
Arger
, “
Mathematical modeling of the dilution curves for ultrasonographic contrast agents
,”
J. Ultrasound Med.
16
,
471
479
(
1997
).
12.
J. N.
Marsh
,
C. S.
Hall
,
M. S.
Hughes
,
J.
Mobley
,
J. G.
Miller
, and
G. H.
Brandenburger
, “
Broadband through-transmission signal loss measurements of Albunex® at concentrations approaching in vivo doses
,”
J. Acoust. Soc. Am.
101
,
1155
1161
(
1997
).
13.
C. S.
Hall
,
J. N.
Marsh
,
M. S.
Hughes
,
J.
Mobley
,
K. D.
Wallace
,
J. G.
Miller
, and
G. H.
Brandenburger
, “
Broadband measurements of the attenuation coefficient and backscatter coefficient for suspensions: A potential calibration tool
,”
J. Acoust. Soc. Am.
101
,
1162
1171
(
1997
).
14.
J.
Mobley
,
M. S.
Hughes
,
J. N.
Marsh
,
C. S.
Hall
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Broadband measurements of phase velocity in Albunex® suspensions
,”
J. Acoust. Soc. Am.
103
,
2145
2153
(
1998
).
15.
E.
Merzbacher
,
J. M.
Feagin
, and
T.-H.
Wu
, “
Superposition of the radiation from N independent sources and the problem of random flights
,”
Am. J. Phys.
45
,
964
969
(
1977
).
16.
H.
Medwin
, “
Counting bubbles acoustically: a review
,”
Ultrasonics
15
,
7
13
(
1977
).
17.
K. K. Shung, “Ultrasonic propagation in tissues” in Ultrasonic Scattering in Biological Tissues, edited by K. K. Shung and G. A. Thieme (CRC, Boca Raton, FL, 1993), pp. 1–17.
18.
M. F. Insana and D. G. Brown, “Acoustic scattering theory applied to soft biological tissues” in Ultrasonic Scattering In Biological Tissues, edited by K. K. Shung and G. A. Thieme (CRC, Boca Raton, FL, 1993), pp. 75–124.
19.
P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton U. P., Princeton, NJ, 1968), Chap. 8.
20.
N.
de Jong
,
F. J. T.
Cate
,
C. T.
Lancée
,
J. R. T. C.
Roelandt
, and
N.
Bom
, “
Principles and recent developments in ultrasound contrast agents
,”
Ultrasonics
29
,
324
330
(
1991
).
21.
R. A.
Sigelmann
and
J. M.
Reid
, “
Analysis and measurement of ultrasound backscattering from an ensemble of scatterers excited by sine-wave bursts
,”
J. Acoust. Soc. Am.
53
,
1351
1355
(
1973
).
22.
M.
O’Donnell
and
J. G.
Miller
, “
Quantitative broadband ultrasonic backscatter: An approach to nondestructive evaluation in acoustically inhomogeneous materials
,”
J. Appl. Phys.
52
,
1056
1065
(
1981
).
23.
J. A.
Campbell
and
R. C.
Waag
, “
Normalization of ultrasonic scattering measurements to obtain average differential scattering cross-sections for tissues
,”
J. Acoust. Soc. Am.
74
,
393
399
(
1983
).
24.
E. L.
Madsen
,
M. F.
Insana
, and
J. A.
Zagzebski
, “
Method of data reduction for accurate determination of acoustic backscatter coefficients
,”
J. Acoust. Soc. Am.
76
,
913
923
(
1984
).
25.
K. A.
Wear
,
M. R.
Milunski
,
S. A.
Wickline
,
J. E.
Perez
,
B. E.
Sobel
, and
J. G.
Miller
, “
Differentiation between acutely ischemic myocardium and zones of completed infarction in dogs on the basis of frequency-dependent backscatter
,”
J. Acoust. Soc. Am.
85
,
2634
2641
(
1989
).
26.
C. S. Hall, “Measurements of ultrasonic backscatter coefficient and attenuation coefficient for anisotropic inhomogeneous media and suspensions of solid and gaseous microspheres,” Ph.D. thesis, Washington University, St. Louis, MO, 1996.
27.
X.
Chen
,
D.
Phillips
,
K. Q.
Schwarz
,
J. G.
Mottley
, and
K. J.
Parker
, “
The Measurement of Backscatter Coefficient from a Broadband Pulse-Echo System: A New Formulation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq.
44
,
515
525
(
1997
).
28.
S. L.
Bridal
,
K. D.
Wallace
,
R. L.
Trousil
,
S. A.
Wickline
, and
J. G.
Miller
, “
Frequency dependence of acoustic backscatter from 5 to 65 MHz (0.06<ka<4.0) of polystyrene beads in agarose
,”
J. Acoust. Soc. Am.
100
,
1841
1848
(
1996
).
29.
M. W.
Miller
,
M.
Azadniv
,
Y.
Doida
, and
A. A.
Brayman
, “
Effect of a stabilized microbubble contrast agent on CW ultrasound induced red blood cell lysis in vitro
,”
Echocardiography
12
,
1
11
(
1995
).
30.
C. C.
Church
, “
The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
31.
J. J.
Faran
, “
Sound scattering by solid cylinders and spheres
,”
J. Acoust. Soc. Am.
23
,
405
418
(
1951
).
32.
A. E.
Hay
and
D. G.
Mercer
, “
On the theory of sound scattering and viscous absorption in aqueous suspensions at medium and short wavelengths
,”
J. Acoust. Soc. Am.
78
,
1761
1771
(
1985
).
33.
N.
de Jong
,
L.
Hoff
,
T.
Skotland
, and
N.
Bom
, “
Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements
,”
Ultrasonics
30
,
95
103
(
1992
).
34.
N.
de Jong
,
R.
Cornet
, and
C. T.
Lancée
, “
Higher harmonics of vibrating gas-filled microspheres. Part one: simulations
,”
Ultrasonics
32
,
447
453
(
1994
).
35.
N.
de Jong
,
R.
Cornet
, and
C. T.
Lancée
, “
Higher harmonics of vibrating gas-filled microspheres. Part two: measurements
,”
Ultrasonics
32
,
455
459
(
1994
).
36.
Z.
Ye
, “
On sound scattering and attenuation of Albunex® microbubbles
,”
J. Acoust. Soc. Am.
100
,
2011
2028
(
1996
).
37.
L.
Hoff
,
C.
Christiansen
, and
T.
Skotland
, “
Consideration about the contribution to acoustic backscatter from albunex microspheres with different sizes
,”
J. Ultrasound Med.
13
,
181
182
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.