A new method for ultrasonic tomography based on genetic algorithms is proposed for the prediction of the geometry of an inclusion of known physical properties in a given specimen. New inversion operators are introduced in order to take full advantage of the physical properties of the system investigated. The efficiency of the proposed method is tested through a comparison with other existing techniques for the solution of the inverse problem. The accuracy of the procedure is verified by using a variety of sets of synthetic data. Good and fast convergence is obtained even in the case of complex geometries if parallel processing is adopted.
REFERENCES
1.
C.
Sullivan
, R.
Kline
, R. B.
Mignogna
, and P. P.
Delsanto
, “A parallel processing approach to acoustic tomography
,” J. Acoust. Soc. Am.
99
, 2142
(1996
).2.
R. S.
Schechter
, R. B.
Mignogna
, and P. P.
Delsanto
, “Ultrasonic tomography using curved ray-paths obtained by wave propagation simulations on a massively parallel computer
,” J. Acoust. Soc. Am.
100
, 2103
(1996
).3.
R. M.
Lewitt
, “Reconstruction algorithms: transform methods
,” Proc. IEEE
71
, 390
(1983
).4.
A. C.
Kak
, “Computerized tomography with x-ray and ultrasonic sources
,” Proc. IEEE
67
, 1245
(1979
).5.
R.
Gordon
, R.
Bender
, and G. T.
Herman
, “Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography
,” J. Theor. Biol.
29
, 471
(1970
).6.
R.
Gordon
, “A Tutorial on ART
,” IEEE Trans. Nucl. Sci.
21
, 78
(1994
).7.
P.
Gilbert
, “Iterative methods for the three-dimensional reconstruction of an object from projections
,” J. Theor. Biol.
29
, 105
(1972
).8.
J. H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, 1975).
9.
D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).
10.
M.
Sanbridge
and G.
Drijkoningen
, “Genetic algorithm in seismic waveform inversion
,” Geophys. J. Int.
109
, 323
(1992
).11.
P. P. Delsanto, F. Moldoveanu, and M. Scalerandi, “A Genetic Algorithm Technique for Acoustic Tomography,” in Proceedings of the Conference on Physics Computing, edited by P. Borchards et al. (Cyfronet, Krakow, 1996), p. 301.
12.
P. P.
Delsanto
, R. S.
Schechter
, H. H.
Chaskelis
, R. B.
Mignogna
, and R.
Kline
, “Connection machine simulation of ultrasonic wave propagation in materials II: the two-dimensional case
,” Wave Motion
20
, 295
(1994
).13.
P. P.
Delsanto
, R. S.
Schechter
, H. H.
Chaskelis
, and R. B.
Mignogna
, “Real-time parallel computation and visualization of ultrasonic pulses in solids
,” Science
295
, 1188
(1994
).14.
P. P.
Delsanto
, R. S.
Schechter
, and R. B.
Mignogna
, “Connection machine simulation of ultrasonic wave propagation in materials III: the three-dimensional case
,” Wave Motion
26
, 329
(1997
).15.
P. P. Delsanto, R. B. Mignogna, R. S. Schechter, and M. Scalerandi, “Simulation of ultrasonic wave propagation in complex media,” in New Perspectives on Problems in Classical and Quantum Physics, edited by P. P. Delsanto and A. W. Saenz (Gordon and Breach, New York, 1998), p. 51.
16.
W. D. Hillis, The Connection Machine (MIT, Cambridge, MA, 1985).
17.
D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation. Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ, 1989).
18.
J. E. Whitesitt, Boolean Algebra and its Applications (Dover, New York, 1995).
This content is only available via PDF.
© 1998 Acoustical Society of America.
1998
Acoustical Society of America
You do not currently have access to this content.