Bats, which echolocate using broadband calls, are believed to employ the passive acoustic filtering properties of the head and pinnae to provide spectral cues which encode 3-D target angle. Microchiropteran species whose calls consist of a single, constant frequency harmonic (i.e., some species in the families Rhinolophidae and Hipposideridae) may create additional acoustic localization cues via vigorous pinna movements. In this work, two types of echolocation cues generated by moving a pair of receivers aboard a model sensor head are investigated. In the first case, it is supposed that a common 3-D echolocation principle employed by all bats is the creation of alternative viewing perspectives, and that constant frequency (CF) echolocators use pinna movement rather than morphology to alter the acoustic axes of their perceptual systems. Alternatively, it is possible rhinolophids and hipposiderids move their ears to create dynamic cues—in the form of frequency and amplitude modulations—which vary systematically with target elevation. Here the use of binaural and monaural timing cues derived from amplitude modulated echo envelopes are investigated. In this case, pinna mobility provides an echolocator with a mechanism for creating dramatic temporal cues for directional sensing which, unlike interaural timing differences, do not degrade with head size.

1.
Biber, C., Ellin, S., Shenk, E., and Stempec, J. (1980). “The polaroid ultrasonic ranging system,” in The 67th Convention of the Audio Engineering Society.
2.
Brainard
,
M.
,
Knudsen
,
E.
, and
Esterly
,
S.
(
1992
). “
Neural derivation of sound source location: Resolution of spatial ambiguities in binaural cues
,”
J. Acoust. Soc. Am.
91
,
1015
1027
.
3.
Fletcher
,
N.
, and
Thwaites
,
S.
(
1979
). “
Physical models for the analysis of acoustical systems in biology
,”
Q. Rev. Biophys.
12
,
25
65
.
4.
Fuzessery
,
Z.
,
Hartley
,
D.
, and
Wenstrup
,
J.
(
1992
). “
Spatial processing within the mustache bat echolocating system: possible mechanisms for optimization
,”
J. Comp. Physiol. A
170
,
57
71
.
5.
Gorlinsky, I., and Konstantinov, A. (1978). “Auditory localization of ultrasonic source by Rhinolophus ferrumequinum,” in Proc. of the Fourth Int. Bat Research Conf., edited by R. Olembo, J. Castelino, and F. Mutere, pp. 145–153.
6.
Griffin
,
D.
,
Dunning
,
D.
,
Cahlander
,
D.
, and
Webster
,
F.
(
1962
). “
Correlated orientation sounds and ear movements of horseshoe bats
,”
Nature (London)
196
,
1185
1186
.
7.
Grinnell
,
A.
, and
Grinnell
,
V.
(
1965
). “
Neural correlates of vertical localization in echolocating bat
,”
J. Physiol. (London)
181
,
830
851
.
8.
Guppy, A., and Coles, R. (1988). “Acoustical aspects of hearing and echolocation in bats,” in Animal SONAR Processes and Performance (NATO ASI Series), edited by P. Nachtigall and P. Moore (Plenum, New York), pp. 289–294.
9.
Kuc
,
R.
(
1994
). “
Sensorimotor model of bat echolocation and prey capture
,”
J. Acoust. Soc. Am.
96
,
1965
1978
.
10.
Lawrence
,
B.
, and
Simmons
,
J.
(
1982
). “
Echolocation in bats: The external ear and perception of the vertical position of targets
,”
Science
218
,
481
483
.
11.
Mogdans
,
J.
,
Ostwald
,
J.
, and
Schnitzler
,
H.
(
1988
). “
The role of pinna movement for the localization of vertical and horizontal wire obstacles in the greater horseshoe bat, Rhinolophus ferrumequinum
,”
J. Acoust. Soc. Am.
84
,
1676
1679
.
12.
Möhres
,
F.
(
1953
). “
Uber die Ultraschallorientierung der Hufeisennasen
,”
Z. fuer Vergleichende Physiologie
34
,
547
588
.
13.
Neuweiler
,
G.
(
1970
). “
Neurophysiologische Untersuchungen zum Echoortungsystem der Grossen Hufeisennase Rhinolophus ferrumequinum
,”
Z. fuer Vergleichende Physiologie
67
,
273
306
.
14.
Neuweiler, G. (1980). “Auditory processing of echoes: Peripheral processing,” in Animal SONAR Systems (NATO ASI Series), edited by R. Busnel and J. Fish (Plenum, New York), pp. 519–548.
15.
Nitsche, V. (1987). “Das Unterscheidungsvermögen für Schlagfrequenzen mechanisch stimulierter Flügel in störungsfreier und akustisch gestörter Umgebung bei der FM-CF-FM Fledermaus Rhinolophus ferrumequinum,” Ph.D. thesis, Fakultät Biologie, München.
16.
Obrist
,
M.
,
Fenton
,
M.
,
Eger
,
J.
, and
Schlegel
,
P.
(
1993
). “
What ears do for bats: A comparative study of pinna sound pressure transformation in chiroptera
,”
J. Exp. Biol.
180
,
119
152
.
17.
Ostwald, J., Schnitzler, H., and Schuller, G. (1988). “Target discrimination and target classification in echolocating bats,” in Animal SONAR Processes and Performance (NATO ASI Series), edited by P. Nachtigall and P. Moore (Plenum, New York), pp. 413–434.
18.
Peremans, H., Walker, V., and Hallam, J. (1997). “A biologically inspired sonarhead,” D. A. I. Technical Report No. 44, University of Edinburgh.
19.
Pollak
,
G.
(
1988
). “
Time is traded for intensity in the bat’s auditory system
,”
Hearing Res.
36
,
107
124
.
20.
Pollak, G., and Park, T. (1996). “The inferior colliculus,” in Hearing By Bats, edited by R. Fay and A. Popper (Springer-Verlag, New York), pp. 296–367.
21.
Pye, J. (1967). “Theories of sonar systems and their application to biological organisms (discussion),” in Animal SONAR Systems, Lab. Physiol. Acoust. CNRS Jouy-en-Josas, pp. 1121–1136.
22.
Pye
,
J.
,
Flinn
,
M.
, and
Pye
,
A.
(
1962
). “
Correlated orientation sounds and ear movements of horseshoe bats
,”
Nature (London)
196
,
1186
1188
.
23.
Pye
,
J.
, and
Roberts
,
L.
(
1970
). “
Ear movements in a hipposiderid bat
,”
Nature (London)
225
,
285
286
.
24.
Schlegel, P. (1980). “Single brain stem unit responses to binaural stimuli simulating moving sounds in Rhinolophus ferrumequinum,” in Animal SONAR Systems (NATO ASI Series), edited by R. Busnel and J. Fish (Plenum, New York), pp. 973–975.
25.
Schneider
,
H.
, and
Möhres
,
F.
(
1960
). “
Die Ohrbewegungen der Hufeisenfledermäuse (Chiroptera, Rhinolophidae) und der Mechanismus des Bildhörens
,”
Z. Vergl. Physiol.
44
,
1
40
.
26.
Schnitzler
,
H.
(
1970
). “
Echoortung bei der Fledermaus chilonycteris rubiginosa
,”
Z. Vergl. Physiol.
68
,
25
39
.
27.
Schnitzler
,
H.
(
1973
). “
Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen
,”
Fortschr. Zool.
21
,
136
189
.
28.
Schuller
,
G.
, and
Pollak
,
G.
(
1979
). “
Disproportionate frequency representation in the inferior colliculus of horseshoe bats: evidence for an ‘acoustic fovea’
,”
J. Comp. Physiol. A
132
,
47
54
.
29.
Sun
,
X.
, and
Jen
,
P.
(
1987
). “
Pinna position affects the auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus
,”
Hearing Res.
27
,
207
219
.
30.
von der Emde
,
G.
, and
Schnitzler
,
H.
(
1986
). “
Fluttering target detection in hipposiderid bats
,”
J. Comp. Physiol. A
14
,
43
55
.
31.
Walker, V. (1997). “An investigation of qualitative echolocation strategies in synthetic bats and real robots,” Ph.D. thesis, University of Edinburgh.
32.
Walker, V., Peremans, H., and Hallam, J. (1998). “Good vibrations: Exploiting reflector motion to partition an acoustic environment,” J. Robotics and Autonomous Systems: Special issue on Quantitative Assessment of Mobile Robot Behaviour (in press).
33.
Wenstrup
,
J.
,
Fuzessery
,
Z.
, and
Pollak
,
G.
(
1988
). “
Binaural neurons in the mustache bat’s inferior colliculus. II. Determinants of spatial responses among 60-kHz EI neurons
,”
J. Neurophysiol.
60
,
1384
1404
.
34.
Wenstrup
,
J.
,
Ross
,
L.
, and
Pollak
,
G.
(
1986
). “
Binaural response organization within a frequency-band representation of the inferior colliculus: implications for sound localization
,”
J. Neurosci.
6
,
962
973
.
This content is only available via PDF.
You do not currently have access to this content.