Distinct frequency dependencies of the acoustic backscattering by zooplankton of different anatomical groups have been observed in our previous studies [, ICES J. Mar. Sci. 49, 97–106 (1992); Stanton et al., ICES J. Mar. Sci. 51, 505–512 (1994)]. Based mainly on the spectral information, scattering models have been proposed to describe the backscattering mechanisms of different zooplankton groups [, J. Acoust. Soc. Am. 103, 236–253 (1998b)]. In this paper, an in-depth study of pulse compression (PC) techniques is presented to characterize the temporal, spectral, and statistical signatures of the acoustic backscattering by zooplankton of different gross anatomical classes. Data collected from various sources are analyzed and the results are consistent with our acoustic models. From compressed pulse (CP) outputs for all three different zooplankton groups, two major arrivals from different parts of the animal body can be identified: a primary and a secondary arrival. (1) Shrimplike animals (Euphausiids and decapod shrimp; near broadside incidence only): the primary one is from the front interface (interface closest to the transducer) of the animal and the secondary arrival is from the back interface; (2) gas-bearing animals (Siphonophores): the primary arrival is from the gas inclusion and the secondary arrival is from the body tissue (“local acoustic center of mass”); and (3) elastic shelled animals (Gastropods): the primary one is from the front interface and the secondary arrival corresponds to the subsonic Lamb wave that circumnavigates the surface of the shell. Statistical analysis of these arrivals is used to successfully infer the size of the individual animals. In conjunction with different aspects of PC techniques explored in this paper, a concept of partial wave target strength (PWTS) is introduced to describe scattering by the different CP highlights. Furthermore, temporal gating of the CP output allows rejection of unwanted signals, improves the output signal-to-noise ratio (SNR) of the spectra of selected partial waves of interest, and provides a better understanding of the scattering mechanism of the animals. In addition, it is found that the averaged PWTS can be used to obtain a more quantitative scattering characterization for certain animals such as siphonophores.

1.
Abramowitz, M., and Stegun, I. A. (1965). Handbook of Mathematical Functions (Dover, New York).
2.
Bracewell, R. N. (1986). The Fourier Transform and Its Applications (McGraw-Hill, New York).
3.
Chu
,
D.
,
Stanton
,
T. K.
, and
Wiebe
,
P. H.
(
1992
). “
Frequency dependence of sound backscattering from live individual zooplankton
,”
ICES J. Mar. Sci.
49
,
97
106
.
4.
Chu
,
D.
,
Foote
,
K. G.
, and
Stanton
,
T. K.
(
1993
). “
Further analysis of target strength measurements of Antarctic krill at 38 kHz and 120 kHz: Comparison with deformed cylinder model and inference of orientation distribution
,”
J. Acoust. Soc. Am.
93
,
2985
2988
.
5.
Clay
,
C. S.
(
1987
). “
Optimum time domain signal transmission and source location in a waveguide
,”
J. Acoust. Soc. Am.
81
,
660
664
.
6.
Clay, C. S., and Medwin, H. (1977). Acoustical Oceanography: Principles and Applications (Wiley–Interscience, New York).
7.
Cook, C. E., and Bernfeld, M. (1967). Sonar Signals (Academic, New York).
8.
Ehrenbreg
,
J. E.
,
Ewart
,
T. E.
, and
Morris
,
R. D.
(
1978
). “
Signal processing techniques for resolving individual pulses in a multipath signal
,”
J. Acoust. Soc. Am.
63
,
1861
1865
.
9.
Holliday
,
D. V.
,
Pieper
,
R. E.
, and
Kleppel
,
G. S.
(
1989
). “
Determination of zooplankton size and distribution with multi-frequency acoustic technology
,”
Journal du Conseil International pour L’Exploration de la Mer
46
,
52
61
.
10.
Holliday
,
D. V.
, and
Pieper
,
R. E.
(
1995
). “
Bioacoustical oceanography at high frequencies
,”
ICES J. Mar. Sci.
52
,
279
296
.
11.
Parvulescu
,
A.
(
1961
). “
Signal detection in a multipath medium by M.E.S.S. processing
,”
J. Acoust. Soc. Am.
33
,
1674
.
12.
Price
,
R.
(
1956
). “
Optimum detection of random signals in noise, with application to scatter-multipath communication
,”
IRE Trans. Inf. Theory
IT-2
,
125
135
.
13.
Robinson, E. A. (1980). Geophysical Signal Analysis (Prentice-Hall, Englewood Cliffs, NJ).
14.
Siebert
,
W. Mc.
(
1956
). “
A radar detection philosophy
,”
IRE Trans. Inf. Theory
IT-2
,
204
221
.
15.
Stanton
,
T. K.
,
Chu
,
D.
, and
Wiebe
,
P. H.
(
1998
a). “
Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms
,”
J. Acoust. Soc. Am.
103
,
225
235
.
16.
Stanton
,
T. K.
,
Chu
,
D.
, and
Wiebe
,
P. H.
(
1998
b). “
Sound scattering by several zooplankton groups. II. Scattering models
,”
J. Acoust. Soc. Am.
103
,
236
253
.
17.
Stanton
,
T. K.
,
Clay
,
C. S.
, and
Chu
,
D.
(
1993
a). “
Ray representation of sound scattering by weakly scattering deformed fluid cylinders: Simple physics and application to zooplankton
,”
J. Acoust. Soc. Am.
94
,
3454
3462
.
18.
Stanton
,
T. K.
,
Chu
,
D.
,
Wiebe
,
P. H.
, and
Clay
,
C. S.
(
1993
b). “
Average echoes from randomly oriented random-length finite cylinders: Zooplankton models
,”
J. Acoust. Soc. Am.
94
,
3463
3472
.
19.
Stanton
,
T. K.
,
Wiebe
,
P. H
,
Chu
,
D.
, and
Goodman
,
L.
(
1994
a). “
Acoustic characterization and discrimination of marine zooplankton and turbulence
,”
ICES J. Mar. Sci.
51
,
469
479
.
20.
Stanton
,
T. K.
,
Wiebe
,
P. H.
,
Chu
,
D.
,
Benfield
,
M. C.
,
Scanlon
,
L.
,
Martin
,
L.
, and
Eastwood
,
R. L.
(
1994
b). “
On acoustic estimates of zooplankton biomass
,”
ICES J. Mar. Sci.
51
,
505
512
.
21.
Thorne
,
P. D.
,
Brudner
,
T. J.
, and
Water
,
K. R.
(
1994
). “
Time-domain and frequency-domain analysis of acoustic scattering by spheres
,”
J. Acoust. Soc. Am.
95
,
2478
2486
.
22.
Thorne
,
P. D.
,
Water
,
K. R.
, and
Brudner
,
T. J.
(
1995
). “
Acoustic measurements of scattering by objects of irregular shape
,”
J. Acoust. Soc. Am.
97
,
242
251
.
23.
Turin
,
G. L.
(
1960
). “
An introduction to matched filters
,”
IRE Trans. Inf. Theory
IT-6
,
311
329
.
24.
Van Trees, H. L. (1968). Detection, Estimation, and Modulation Theory (Wiley, New York), Pt. III.
25.
Van Vleck
,
J. H.
, and
Middleton
,
D.
(
1946
). “
A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise
,”
J. Appl. Phys.
17
,
940
971
.
26.
Whalen, A. D. (1971). Detection of Signals in Noise (Academic, New York).
27.
Winder, A., and Loda, C. J. (1981). Space-time Information Processing (Peninsula, Los Altos, CA), pp. 153–156.
28.
Zhang
,
L. G.
,
Sun
,
N. H.
, and
Marston
,
P. L.
(
1992
). “
Midfrequency enhancement of the backscattering of tone bursts by thin elastic shells
,”
J. Acoust. Soc. Am.
91
,
1862
1874
.
This content is only available via PDF.
You do not currently have access to this content.