Distortion-product otoacoustic emissions were recorded from the tympanum of the grasshopper, Locusta migratoria. The hearing organ of this insect is in direct contact with the tympanum and does not contain sensory hair cells. 2f1−f2 distortions were measured for stimulus frequencies between 2–70 kHz. For frequencies between 3–9 kHz, the level of 2f1–f2 was 30–50 dB below the stimulus level. 2f1−f2 threshold curves calculated from distortion growth functions at different f2 frequencies are most sensitive between 3–9 kHz. These thresholds match the auditory sensitivity of low frequency receptor neurons in the ear [Römer, J. Comp. Physiol. 109, 101–122 (1976)]. In contrast to vertebrates, the dependence of the 2f1−f2 level on the frequency ratio f2/f1 did not show distinct maxima for most f2 frequencies. The distortion levels were largest for small ratios close to 1. The behavior of 2f1−f2 was significantly different for stimulus frequencies below and above 10 kHz. Below 10 kHz, the thresholds were more sensitive, the slope of distortion growth curves was shallower by a factor of at least 2, and the distortion levels reversibly decreased during CO2-induced hypoxia. Nonlinear mechanical processing may therefore be a general feature of sensitive hearing organs, even if these involve very different morphologies. Our results suggest that the the ciliated dendrites of the receptor cells of the insect may play a role in distortion generation.

1.
Allen
,
J. B.
, and
Fahey
,
P. F.
(
1993
). “
A second cochlear frequency map that correlates distortion product and neural tuning measurements
,”
J. Acoust. Soc. Am.
94
,
809
816
.
2.
Breckow
,
J.
, and
Sippel
,
M.
(
1985
). “
Mechanics of the transduction of sound in the tympanal organ of adult and larvae of locusts
,”
J. Comp. Physiol. A
157
,
619
629
.
3.
Brown
,
A. M.
, and
Kemp
,
D. T.
(
1984
). “
Suppressibility of the 2f1−f2 stimulated acoustic emission in gerbil and man
,”
Hearing Res.
13
,
29
37
.
4.
Brown
,
A. M.
,
Gaskill
,
S. A.
, and
Williams
,
D. M.
(
1992
). “
Mechanical filtering of sound in the inner ear
,”
Proc. R. Soc. London, Ser. B
250
,
26
34
.
5.
Brown
,
A. M.
,
McDowell
,
B.
, and
Forge
,
A.
(
1989
). “
Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment
,”
Hearing Res.
42
,
143
156
.
6.
Dallos
,
P.
(
1992
). “
The active cochlea
,”
J. Neurosci.
12
,
4575
4585
.
7.
Faulstich
,
M.
,
Kössl
,
M.
, and
Reimer
,
K.
(
1996
). “
Analysis of non-linear cochlear mechanics in the marsupial Monodelphis domestica: ancestral and modern mammalian features
,”
Hearing Res.
94
,
47
53
.
8.
Frank
,
G.
, and
Kössl
,
M.
(
1996
). “
The acoustic two-tone distortions 2f1−f2 and f2−f1 and their possible relation to changes in the operating point of the cochlear amplifier
,”
Hearing Res.
98
,
104
115
.
9.
Gaskill
,
S. A.
, and
Brown
,
A. M.
(
1990
). “
The behavior of the acoustic distortion product, 2f1−f2, from the human ear and its relation to auditory sensitivity
,”
J. Acoust. Soc. Am.
88
,
821
839
.
10.
Gray
,
E. G.
(
1960
). “
The fine structure of the insect ear
,”
Philos. Trans. R. Soc. London, Ser. B
243
,
75
94
.
11.
Hamon
,
A.
,
Guillet
,
J. C.
, and
Callec
,
J. J.
(
1988
). “
Initiation and conduction of impulses in mechanosensory neurons: effects of hypoxia
,”
Comp. Biochem. Physiol.
91A
,
797
805
.
12.
Horner
,
K. C.
,
Lenoir
,
M.
, and
Bock
,
G. R.
(
1985
). “
Distortion product otoacoustic emissions in hearing-impaired mutant mice
,”
J. Acoust. Soc. Am.
78
,
1603
1611
.
13.
Howard
,
J.
, and
Hudspeth
,
A. J.
(
1988
). “
Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell
,”
Neuron
1
,
189
199
.
14.
Janssen T., Kummer, P., and Arnold, W. (1996). “Growth of the 2f1−f2 distortion product otoacoustic emission in tinnitus,” in Abstracts of the 19th midwinter research meeting of the Assoc. for Research in Otolaryngology, St. Petersburg Beach, p. 96.
15.
Jaramillo
,
F.
,
Markin
,
V. S.
, and
Hudspeth
,
A. J.
(
1993
). “
Auditory illusions and the single hair cell
,”
Nature (London)
364
,
527
529
.
16.
Kettembeil
,
S.
,
Manley
,
G. A.
, and
Siegl
,
E.
(
1995
). “
Distortion-product otoacoustic emissions and their anaesthesia sensitivity in the starling and the European chicken
,”
Hearing Res.
86
,
47
62
.
17.
Köppl, C. (1995). “Otoacoustic emissions as an indicator for active cochlear mechanics: a primitive property of vertebrate hearing organs,” in Advances in Hearing Research, edited by G. A. Manley, G. M. Klump, C. Köppl, H. Fastl, and H. Oeckinghaus (World Scientific, Singapore), pp. 207–218.
18.
Kössl
,
M.
(
1992
). “
High frequency distortion products from the ears of two bat species, Megaderma lyra and Carollia perspicillata
,”
Hearing Res.
60
,
156
164
.
19.
Kössl
,
M.
(
1994
). “
Otoacoustic emissions from the cochlea of the ‘constant frequency’ bats, Pteronotus parnellii and Rhinolophus rouxi
,”
Hearing Res.
72
,
59
72
.
20.
Kössl, M., and Boyan, G. S. (1997). “Distortion-product otoacoustic emissions from the ear of the grasshopper, Locusta migratoria,” in Abstracts of the 20th Midwinter Research Meeting of the ARO, St. Petersburg Beach, Florida, Abstract #238.
21.
Kössl
,
M.
, and
Boyan
,
G. S.
(
1998
). “
Otoacoustic emissions from a non-vertebrate ear
,”
Naturwissenschaften
85
,
124
126
.
22.
Kössl
,
M.
, and
Vater
,
M.
(
1996
). “
Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products
,”
Hearing Res.
94
,
78
86
.
23.
Kujawa
,
S. G.
,
Fallon
,
M.
, and
Bobbin
,
R. P.
(
1992
). “
Intracochlear Salicylate reduces low-intensity acoustic and cochlear microphonic distortion products
,”
Hearing Res.
64
,
73
80
.
24.
Kutsch
,
W.
, and
Otto
,
D.
(
1972
). “
Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L.
,”
J. Comp. Physiol.
81
,
115
119
.
25.
Manley, G. A. (1995). “The avian hearing organ: a status report,” in Advances in Hearing Research, edited by G. A. Manley, G. M. Klump, C. Köppl, H. Fastl, and H. Oeckinghaus (World Scientific, Singapore), pp. 219–229.
26.
Manley
,
G. A.
, and
Köppl
,
C.
(
1993
). “
Distortion-product otoacoustic emissions in the bobtail lizard. I. General characteristics
,”
J. Acoust. Soc. Am.
93
,
2820
2844
.
27.
Meyer
,
J.
, and
Elsner
,
N.
(
1996
). “
How well are frequency sensitivities of grasshopper ears tuned to species-specific song spectra
,”
J. Exp. Biol.
199
,
1631
1642
.
28.
Michelsen
,
A.
(
1971
). “
The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear,” “II. Frequency discrimination based upon resonances in the tympanum,” and “III. Acoustical properties of the intact ear
,”
Z. Vergl. Physiologie
71
,
49
128
.
29.
Michelsen, A. (1973). “The mechanics of the locust ear: an invertebrate frequency analyzer,” in Basic Mechanisms in Hearing, edited by A. R. Moller (Academic, New York), pp. 911–934.
30.
Michelsen
,
A.
, and
Rohrseitz
,
K.
(
1995
). “
Directional sound processing and interaural sound transmission in a small and a large grasshopper
,”
J. Exp. Biol.
198
,
1817
1827
.
31.
Miller
,
L. A.
(
1977
). “
Directional hearing in the locust Schistocerca gregaria Forskal (Acrididae, Orthoptera)
,”
J. Comp. Physiol.
119
,
85
98
.
32.
Mills
,
D. M.
, and
Rubel
,
E. W.
(
1996
). “
Development of the cochlear amplifier
,”
J. Acoust. Soc. Am.
100
,
428
441
.
33.
Mills
,
D. M.
,
Norton
,
S. J.
, and
Rubel
,
E. W.
(
1993
). “
Vulnerability and adaptation of distortion-product otoacoustic emissions to endocochlear potential variation
,”
J. Acoust. Soc. Am.
94
,
2108
2122
.
34.
Moran
,
D. T.
,
Varela
,
F. J.
, and
Rowley
III,
J. C.
(
1977
). “
Evidence for active role of cilia in sensory transduction
,”
Proc. Natl. Acad. Sci. USA
74
,
793
797
.
35.
Neely, S. T., and Stover, L. J. (1997). “A generation of distortion products in a model of cochlear mechanics,” in Diversity in Auditory Mechanics, edited by E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar (World Scientific, Singapore), pp. 434–440.
36.
Oldfield
,
B. P.
(
1988
). “
The effect of temperature on tuning and physiology of insect auditory receptors
,”
Hearing Res.
35
,
151
158
.
37.
Probst
,
R.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1991
). “
A review of otoacoustic emissions
,”
J. Acoust. Soc. Am.
89
,
2027
2067
.
38.
Rebillard
,
G.
, and
Lavigne-Rebillard
,
M.
(
1992
). “
Effect of reversible hypoxia on compared time courses of endocochlear potential and 2f1−f2 distortion products
,”
Hearing Res.
62
,
142
148
.
39.
Römer
,
H.
(
1976
). “
Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria (Acrididae, Orthoptera)
,”
J. Comp. Physiol.
109
,
101
122
.
40.
Ruggero
,
M. A.
(
1993
). “
Distortion in those good vibrations
,”
Curr. Biol.
3
,
755
758
.
41.
Russell
,
I. J.
,
Kössl
,
M.
, and
Richardson
,
G. P.
(
1992
). “
Nonlinear mechanical responses of mouse cochlear hair bundles
,”
Proc. R. Soc. London, Ser. B
250
,
217
227
.
42.
Sippel
,
M.
, and
Breckow
,
J.
(
1983
). “
Non-linear analysis of the transmission of signals in the auditory system of the migratory locust Locusta migratoria
,”
Biol. Cybern.
46
,
197
205
.
43.
Sippel
,
M.
, and
Breckow
,
J.
(
1984
). “
Non-monotonic response-intensity characteristic of auditory receptor cells in Locusta migratoria
,”
J. Comp. Physiol. A
155
,
633
638
.
44.
Stephen
,
R. O.
, and
Bennet-Clark
,
C.
(
1982
). “
The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear
,”
J. Exp. Biol.
99
,
279
314
.
45.
Vater
,
M.
, and
Kössl
,
M.
(
1996
). “
Further studies on the mechanics of the cochlear partition in the mustached bat. II. Ultrastructural observations on the tectorial membrane and its attachments
,”
Hearing Res.
94
,
63
77
.
46.
Whitehead, M. L., Lonsbury-Martin, B. L., Martin, G. K., and McCoy, M. J. (1996). “Otoacoustic emissions: Animal Models and Clinical Observations,” in Clinical Aspects of Hearing, edited by T. R. Van de Water, A. N. Popper, and R. F. Fay (Springer-Verlag, New York), pp. 199–258.
47.
Wolfrum
,
U.
(
1991
). “
Tropomyosin is colocalized with actin filaments of the scolopale in insect sensilla
,”
Cell Tissue Res.
265
,
11
17
.
This content is only available via PDF.
You do not currently have access to this content.