The feasibility of inverting acoustic field statistics to obtain the parameters of a stochastic internal wave model is demonstrated using numerical simulations. For weak scattering satisfying the Rytov approximation, the parameters of a generalized form of the Garrett–Munk internal wave model can be obtained. A hierarchy of experiment scenarios has been studied. Scenarios range from a densely populated vertical receiving array to single-point measurements. In each case, the intrinsic range-averaging of acoustic measurements provides integral constraints on the environmental model. The success of the inversion improves with increasing experimental complexity. With a vertical array, up to four parameters of the internal wave model can be recovered. For the simplest situation, two parameters can be fit with reasonable accuracy. The implications of these results for understanding oceanographic processes are discussed.

1.
W. H. Munk, “Internal waves and small-scale processes,” in Evolution of Physical Oceanography, edited by B. A. Warren and C. Wunsch (MIT, Cambridge, MA, 1981), pp. 264–291.
2.
M. D.
Levine
,
C. A.
Paulson
, and
J. H.
Morison
, “
Internal waves in the Arctic Ocean: Comparison with lower-latitude observations
,”
J. Phys. Oceanogr.
15
,
800
809
(
1985
).
3.
T. E.
Ewart
and
S. A.
Reynolds
, “
The Mid-ocean Acoustic Transmission Experiment, MATE
,”
J. Acoust. Soc. Am.
75
,
785
802
(
1984
).
4.
C.
Macaskill
and
T. E.
Ewart
, “
Numerical solution of the fourth moment equation for acoustic intensity correlations and comparison with the mid-ocean acoustic transmission experiment
,”
J. Acoust. Soc. Am.
99
,
1419
1429
(
1996
).
5.
B. J.
Uscinski
, “
Acoustic scattering by ocean irregularities: Aspects of the inverse problem
,”
J. Acoust. Soc. Am.
79
,
347
355
(
1986
).
6.
T. E.
Ewart
, “
Acoustic propagation, internal waves and finestructure
,”
Proc. Inst. Acoust.
8
,
106
122
(
1986
).
7.
A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2, Chap. 18.
8.
T. F.
Duda
, “
Modeling weak fluctuations of undersea telemetry signals
,”
IEEE J. Ocean Eng.
16
,
3
11
(
1991
).
9.
K. B.
Winters
and
E.
D’Asaro
, “
Direct simulation of internal wave energy transfer
,”
J. Phys. Oceanogr.
27
,
1937
1945
(
1997
).
10.
S. M. Flatté, R. Dashen, W. Munk, K. Watson, and F. Zachariasen, Sound Transmission Through a Fluctuating Ocean (Cambridge U.P., London, 1979).
11.
D.
Tielbürger
,
S.
Finette
, and
S.
Wolf
, “
Acoustic propagation through an internal wave field in a shallow water waveguide
,”
J. Acoust. Soc. Am.
101
,
789
808
(
1997
).
12.
X.
Tang
and
F. D.
Tappert
, “
Effects of internal waves in sound pulse propagation in the Straits of Florida
,”
IEEE J. Ocean Eng.
22
,
245
255
(
1997
).
13.
F. S.
Henyey
,
D.
Rouseff
,
J. M.
Grochocinski
,
S. A.
Reynolds
,
K. W.
Williams
, and
T. E.
Ewart
, “
Effects of internal waves and turbulence on horizontal aperture sonar
,”
IEEE J. Ocean Eng.
22
,
270
280
(
1997
).
14.
W. H.
Munk
and
F.
Zachariasen
, “
Sound propagation through a fluctuating, stratified ocean: Theory and observation
,”
J. Acoust. Soc. Am.
59
,
818
838
(
1976
).
15.
M. D.
Levine
, “
Internal waves under the arctic pack ice during the Arctic Internal Wave Experiment: the coherence structure
,”
J. Geophys. Res.
95
(
C5
),
7347
7357
(
1990
).
16.
T. E.
Ewart
and
S. A.
Reynolds
, “
Instrumentation to measure the depth/time fluctuations in acoustic pulses propagated through arctic internal waves
,”
J. Atmos. Ocean. Tech.
7
,
129
139
(
1990
).
17.
M. D.
Levine
,
J. D.
Irish
,
T. E.
Ewart
, and
S. A.
Reynolds
, “
Simultaneous spatial and temporal measurements of the internal wave field during MATE
,”
J. Geophys. Res.
91
(
C8
),
9709
9719
(
1986
).
18.
P. M.
van den Berg
,
M. G.
Coté
, and
R. E.
Kleinman
, “
‘Blind’ shape reconstruction from experimental data
,”
IEEE Trans. Antennas Propag.
43
,
1389
1396
(
1995
).
19.
T. E. Ewart and S. A. Reynolds, “Ocean acoustic propagation measurements and wave propagation in random media” in Wave Propagation in Random Media (Scintillation), edited by V. I. Tatarski, A. Ishimaru, and V. U. Zavorotny (SPIE, Bellingham, 1993), pp. 100–123.
20.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980), Eq. 3.251.2.
21.
B. M.
Bell
,
J. V.
Burke
, and
A.
Schumitzky
, “
A relative weighting method for estimating parameters and variances in multiple data sets
,”
Comput. Stat. Data Anal.
22
,
119
135
(
1996
).
22.
D. Rouseff, T. E. Ewart, and S. A. Reynolds, “Obtaining the ocean index of refraction spectrum from the acoustic amplitude fluctuations” in High Frequency Acoustics in Shallow Water, edited by N. G. Pace, E. Pouliquen, O. Bergen, and A. P. Lyons (NATO SACLANT Undersea Research Centre, La Spezia, Italy, 1997), pp. 467–474.
23.
Y. J. F.
Desaubies
, “
On the scattering of sound by internal waves
,”
J. Acoust. Soc. Am.
64
,
1460
1469
(
1978
).
24.
S.
Frankenthal
, “
Close range scintillations in anisotropic scattering media
,”
J. Acoust. Soc. Am.
77
,
1395
1402
(
1985
).
25.
F. S. Henyey, “Sound through internal waves: difficult cases,” in Proceedings ‘Aha Huliko’a Hawaiian Winter Workshop, edited by P. Müller and D. Henderson (SOEST Special Publication, Honolulu, 1997), pp. 175–180.
26.
R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1986).
This content is only available via PDF.
You do not currently have access to this content.