Intracochlear pressure was measured in vivo in the base of the gerbil cochlea. The measurements were made over a wide range of frequencies simultaneously in scalae vestibuli and tympani. Pressure was measured just adjacent to the stapes in scala vestibuli and at a number of positions spaced by tens of micrometers, including a position within several micrometers of the basilar membrane, in scala tympani. Two findings emerged from the basic results. First, the spatial variation in scala tympani pressure indicated that the pressure is composed of two modes, which can be identified with fast and slow waves. Second, at frequencies between 2 and 46 kHz (the upper frequency limit of the measurements) the scala vestibuli pressure adjacent to the stapes had a gain of approximately 30 dB with respect to the pressure in the ear canal, and a phase which decreased linearly with frequency. Thus, over these frequencies the middle ear and its termination in the cochlea operate as a frequency independent transmission line. A subset of the data was analyzed further to derive the velocity of the basilar membrane, the pressure difference across the organ of Corti complex (defined to include the tectorial and basilar membranes) and the specific acoustic impedance of the organ of Corti complex. The impedance was found to be tuned in frequency.

1.
Allen
,
J.
, and
Faley
,
P.
(
1992
). “
Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane
,”
J. Acoust. Soc. Am.
92
,
178
188
.
2.
de Boer
,
E.
(
1983
). “
No sharpening? A challenge for cochlear mechanics
,”
J. Acoust. Soc. Am.
73
,
567
573
.
3.
Cody
,
A.
(
1992
). “
Acoustic lesions in the mammalian cochlea: Implications for the spatial distribution of the ‘active process,’
 ”
Hearing Res.
62
,
166
172
.
4.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1992
a). “
Basilar membrane mechanics in the hook region of cat and guinea-pig cochlea: Sharp tuning and nonlinearity in the absence of baseline position shifts
,”
Hearing Res.
63
,
163
190
.
5.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1992
b). “
Basilar membrane tonotopicity in the hook region of the cat cochlea
,”
Hearing Res.
63
,
191
196
.
6.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1996
). “
Fast travelling waves, slow travelling waves, and their interactions in experimental studies of apical cochlear mechanics
,”
Aud. Neurosci.
2
,
207
212
.
7.
Dancer
,
A.
, and
Franke
,
R.
(
1980
). “
Intracochlear sound pressure measurements in guinea pigs
,”
Hearing Res.
2
,
191
205
.
8.
Dancer, A., Avan, P., and Magnan, P. (1997). “Can the traveling wave be challenged by direct intracochlear pressure measurements?,” in Diversity in Auditory Mechanics, edited by E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar (World Scientific, Singapore), pp. 340–346.
9.
Decory, L., Franke, R. B., and Dancer, A. L. (1990). “Measurement of middle ear transfer function in cat, chinchilla and guinea pig,” in The Mechanics and Biophysics of Hearing, edited by P. Dallos, C. D. Geisler, J. W. Matthews, M. A. Ruggero, and C. R. Steele (Springer Verlag, Berlin), pp. 270–277.
10.
Decraemer
,
W. F.
,
Khanna
,
S. M.
, and
Funnell
,
W. R. J.
(
1994
). “
A method for determining three-dimensional vibration in the ear
,”
Hearing Res.
77
,
19
37
.
11.
Decraemer, W. F., Khanna, S. M., and Funnell, W. R. J. (1997). “Vibrations of the cat tympanic membrane measured with high spatial resolution,” Abstract 192 from the 20th Midwinter Research Meeting, Association for Research in Otolaryngology.
12.
Diependaal
,
R. J.
,
Viergever
,
M. A.
, and
deBoer
,
E.
(
1986
). “Are active elements necessary in the basilar membrane impedance?,”
J. Acoust. Soc. Am.
80
,
124
132
.
13.
Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. (Springer Verlag, New York), Chap. 7.
14.
Hu
,
A.
,
Cuomo
,
F. W.
, and
Zuckerwar
,
A. J.
(
1992
). “
Theoretical and experimental study of a fiber optic microphone
,”
J. Acoust. Soc. Am.
91
,
3049
3056
.
15.
Hubbard
,
A.
(
1993
). “
A traveling-wave amplifier model of the cochlea
,”
Science
259
,
68
71
.
16.
Johnstone
,
J. R.
,
Alder
,
V. A.
,
Johnstone
,
B. M.
,
Roberstons
,
D.
, and
Yates
,
G. K.
(
1979
). “
Cochlear action potential threshold and single unit threshold
,”
J. Acoust. Soc. Am.
65
,
254
257
.
17.
Khanna
,
S. M.
, and
Leonard
,
D. G. B.
(
1986
). “
Relationship between basilar membrane tuning and hair cell condition
,”
Hearing Res.
23
,
55
70
.
18.
Kolston
,
P. J.
(
1988
). “
Sharp mechanical tuning in a cochlear model without negative damping
,”
J. Acoust. Soc. Am.
83
,
1481
1487
.
19.
Lighthill
,
J.
(
1981
). “
Energy flow in the cochlea
,”
J. Fluid Mech.
106
,
149
213
.
20.
Lynch
,
T. J.
,
Nedzelnitsky
,
V.
, and
Peake
,
W. T.
(
1982
). “
Input impedance of the cochlea in cat
,”
J. Acoust. Soc. Am.
72
,
108
123
.
21.
Müller
,
M.
(
1996
). “
The cochlea place-frequency map of the adult and developing mongolian gerbil
,”
Hearing Res.
94
,
148
156
.
22.
Nedzelnitsky
,
V.
(
1980
). “
Sound pressures in the basal turn of the cat cochlea
,”
J. Acoust. Soc. Am.
68
,
1676
1689
.
23.
Neely
,
S. T.
, and
Kim
,
D. O.
(
1986
). “
A model for active elements in cochlear biomechanics
,”
J. Acoust. Soc. Am.
79
,
1472
1480
.
24.
Nuttall
,
A. L.
, and
Dolan
,
D. F.
(
1996
). “
Steady-state sinusoidal responses of the basilar membrane in guinea pig
,”
J. Acoust. Soc. Am.
99
,
1556
1565
.
25.
Olson, E. S., and Borawala, S. (1997). “The design and purpose of an intracochlear pressure sensor.” in Diversity in Auditory Mechanics, edited by E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar (World Scientific, Singapore), pp. 347–353.
26.
Olson
,
E. S.
, and
Mountain
,
D. C.
(
1991
). “
In vivo measurement of basilar membrane stiffness
,”
J. Acoust. Soc. Am.
89
,
1262
1275
.
27.
Olson
,
E. S.
, and
Mountain
,
D. C.
(
1994
). “
Mapping the cochlea’s mechanical properties to its cellular architecture
,”
J. Acoust. Soc. Am.
95
,
395
400
.
28.
Peterson
,
L. C.
, and
Bogart
,
B. P.
(
1950
). “
A dynamical theory of the cochlea
,”
J. Acoust. Soc. Am.
22
,
369
381
.
29.
Plassman
,
W.
,
Peetz
,
W.
, and
Schmidt
,
M.
(
1987
). “
The cochlea in gerbilline rodents
,”
Brain Behavior and Evolution
30
,
82
101
.
30.
Puria
,
S.
, and
Allen
,
J. B.
(
1991
). “
A parametric study of cochlear input impedance
,”
J. Acoust. Soc. Am.
89
,
287
309
.
31.
Puria, S., and Allen, J. B. (1997). “Cat middle-ear measurements and model: Evidence of acoustic delay in the tympanic membrane,” Abstract 193 from the 20th Midwinter Research Meeting, Association for Research in Otolaryngology.
32.
Puria
,
S.
,
Peake
,
W. T.
, and
Rosowski
,
J. J.
(
1997
). “
Sound pressure measurements in the cochlear vestibule of human-cadaver ears
,”
J. Acoust. Soc. Am.
101
.
33.
Rhode
,
W. S.
(
1971
). “
Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
34.
Ruggero, M. A., Rich, N. C., Robles, L., and Recio, A. (1996). “The effects of acoustic trauma, other cochlear injury, and death on basilar-membrane responses to sound,” in Scientific Basis of Noise-Induced Hearing Loss, edited by A. Axelsson et al. (Thieme Medical, New York), pp. 23–35.
35.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Robles
,
L.
, and
Shivalpuja
,
B. G.
(
1990
). “
Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea
,”
J. Acoust. Soc. Am.
87
,
1612
1629
.
36.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Srayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
37.
Ryan
,
A.
(
1976
). “
Hearing sensitivity of the mongolian gerbil, Meriones unguiculatus
,”
J. Acoust. Soc. Am.
59
,
1222
1226
.
38.
Schloss
,
F.
, and
Strasberg
,
M.
(
1962
). “
Hydrophone calibration in a vibrating column of liquid
,”
J. Acoust. Soc. Am.
34
,
958
960
.
39.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique
,”
J. Acoust. Soc. Am.
72
,
131
141
.
40.
Steele
,
C. R.
(
1974
). “
Behavior of the basilar membrane with pure-tone excitation
,”
J. Acoust. Soc. Am.
55
,
148
162
.
41.
Steele
,
C. R.
, and
Taber
,
L. A.
(
1979
). “
Comparison of WKB calculations and experimental results for three-dimensional cochlear models
,”
J. Acoust. Soc. Am.
65
,
1007
1018
.
42.
Taber
,
L. A.
, and
Steele
,
C. R.
(
1981
). “
Cochlear model including three-dimensional fluid and four modes of partition flexibility
,”
J. Acoust. Soc. Am.
70
,
426
436
.
43.
Timoshenko, S. P., and Woinowsky-Krieger, S. (1959). Theory of Plates and Shells (McGraw–Hill, New York), Chap. 3.
44.
Ulfendahl
,
M.
, and
Khanna
,
S. M.
(
1993
). “
Mechanical tuning characteristics of the hearing organ measured with the sensory cells in the gerbil temporal bone preparation
,”
Pflugers Arch. Ges. Physiol. Menschen Tiere
424
,
95
104
.
45.
Xue
,
S.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1995
). “
Electrically evoked basilar membrane motion
,”
J. Acoust. Soc. Am.
97
,
3030
3041
.
46.
Zhou
,
G.
,
Bintz
,
L.
,
Anderson
,
D. Z.
, and
Bright
,
K. E.
(
1993
). “
A life-sized physical model of the human cochlea with optical holographic readout
,”
J. Acoust. Soc. Am.
93
,
1516
1523
.
This content is only available via PDF.
You do not currently have access to this content.