Octopus cells are one of the principal cell types in the mammalian posteroventral cochlear nucleus. These cells respond to the onset of a toneburst with a precisely timed spike followed by little, if any, sustained activity. While experimental studies have partially characterized the cell, the mechanisms of this onset response are not well understood. The present study involved a model-based investigation that analyzed the responses of a compartmental model of the octopus cell in terms of synaptic effectiveness and dynamic spike threshold. The simulations demonstrate that properties of the onset response (first-spike latency, temporal precision of the first spike, and sustained firing rate) can be predicted from the values of these cell properties for a wide range of model configurations. These relationships were further analyzed through the development of mathematical expressions for synaptic effectiveness and dynamic spike threshold. This computational analysis resulted in a relatively simple explanation of the onset response, as well as predictions of the responses of octopus cells to nontonal, complex stimuli.

1.
Bower, J. M., and Beeman, D. (1995). The Book of GENESIS (Kluwer Academic, New York).
2.
Feng
,
J. J.
,
Kuwada
,
S.
,
Ostapoff
,
E. M.
,
Batra
,
R.
, and
Morest
,
D. K.
(
1994
). “
A physiological and structural study of neuron types in the cochlear nucleus. I. Intracellular responses to acoustic stimulation and current injection
,”
J. Comp. Neurol.
346
,
1
18
.
3.
Godfrey
,
D. A.
,
Kiang
,
N. Y. S.
, and
Norris
,
B. E.
(
1975
). “
Single unit activity in the posteroventral cochlear nucleus of the cat
,”
J. Comp. Neurol.
162
,
247
268
.
4.
Golding
,
N. L.
,
Robertson
,
D.
, and
Oertel
,
D.
(
1995
). “
Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision
,”
J. Neurosci.
15
,
3138
3153
.
5.
Kane, E. C. (1973). “Octopus cells in the cochlear nucleus of the cat: Heterotypic synapses upon homeotypic neurons,” Int. J. Neurosc. 5, 251–279.
6.
Kim, D. O., Rhode, W. S., and Greenberg, S. R. (1986). “Responses of cochlear nucleus neurones to speech signals: neural encoding of pitch, intensity and other parameters,” in Auditory Frequency Selectivity, edited by B. C. J. Moore and R. D. Patterson (Plenum, New York), pp. 281–288.
7.
Kipke
,
D. R.
, and
Levy
,
K. L.
(
1997
). “
Sensitivity of the cochlear nucleus octopus cell to synaptic and membrane properties: A modeling study
,”
J. Acoust. Soc. Am.
102
,
403
412
.
8.
Levy
,
K. L.
, and
Kipke
,
D. R.
(
1997
). “
A computational model of the cochlear nucleus octopus cell
,”
J. Acoust. Soc. Am.
102
,
391
412
.
9.
Liberman
,
M. C.
(
1993
). “
Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei
,”
J. Comp. Neurol.
327
,
17
36
.
10.
Osen
,
K. K.
(
1969
). “
Cytoarchitecture of the cochlear nuclei in the cat
,”
J. Comp. Neurol.
136
,
453
484
.
11.
Palombi
,
P. S.
, and
Caspary
,
D. M.
(
1992
). “
GABAA receptor antagonist bicuculline alters response properties of posteroventral cochlear nucleus neurons
,”
J. Neurophysiol.
67
,
738
746
.
12.
Rall, W. (1989). “Cable theory for dendritic neurons,” in Methods in Neuronal Modeling, edited by C. Koch and I. Segev (MIT, Cambridge, MA), pp. 9–62.
13.
Rhode
,
W. S.
,
Oertel
,
D.
, and
Smith
,
P. H.
(
1983
). “
Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus
,”
J. Comp. Neurol.
213
,
448
463
.
14.
Rhode
,
W. S.
, and
Smith
,
P. H.
(
1986
). “
Encoding time and intensity in the ventral cochlear nucleus of the cat
,”
J. Neurophysiol.
56
,
262
286
.
15.
Ritz
,
L. A.
, and
Brownell
,
W. E.
(
1982
). “
Single unit analysis of the posteroventral cochlear nucleus of the decerebrate cat
,”
Neuroscience
7
,
1995
2010
.
16.
Romand
,
R.
(
1978
). “
Survey of intracellular recording in the cochlear nucleus of the cat
,”
Brain Res.
148
,
43
65
.
17.
Rouiller
,
E. M.
, and
Ryugo
,
D. K.
(
1984
). “
Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat
,”
J. Comp. Neurol.
225
,
167
186
.
18.
Saint Marie
,
R. L.
,
Morest
,
D. K.
, and
Brandon
,
C. J.
(
1989
). “
The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat
,”
Hearing Res.
42
,
97
112
.
19.
Smith, P. H., Joris, P. X., Banks, M. I., and Yin, T. C. T. (1993). “Responses of cochlear nucleus cells and projections of their axons,” in The Mammalian Cochlear Nuclei: Organization and Function, edited by M. A. Merchan, J. M. Juiz, D. A. Godfrey, and E. Mugnaini (Plenum, New York), pp. 349–360.
20.
Winter
,
I. M.
, and
Palmer
,
A. R.
(
1995
). “
Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise
,”
J. Neurophysiol.
73
,
141
159
.
This content is only available via PDF.
You do not currently have access to this content.