Large differences in the ultrasonic velocity of the solid and liquid phases of semiconductors have stimulated an interest in the use of laser ultrasonic methods for locating and characterizing solid–liquid interfaces during single crystal growth. A previously developed two-dimensional ray tracing analysis has been generalized and used to investigate three-dimensional ultrasonic propagation across solid–liquid interfaces in cylindrical bodies where the receiver is located at an arbitrary position relative to the source. Numerical simulations of ultrasonic ray paths, wavefronts, and time of flight have indicated that ultrasonic sensing in the diametral plane is a preferred sensing configuration since the transmitted, reflected, and refracted rays all propagate in this plane, significantly simplifying analysis of the results. While other sensing configurations can also provide information about solid–liquid interfaces, they require a more complicated analysis because the planes in which reflected and refracted rays propagate are not known a priori, and fewer ray paths are accessible for interface interrogation because of large refractions.

1.
M. C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974).
2.
T.
Fu
and
W. R.
Wilcox
, “
Influence of insulation on stability of interface shape and position in the vertical Bridgman–Stockbarger technique
,”
J. Cryst. Growth
48
,
416
424
(
1980
).
3.
M.
Pfeiffer
and
M.
Mühlberg
, “
Interface shape observation and calculation in crystal growth of CdTe by the vertical Bridgman method
,”
J. Cryst. Growth
118
,
269
276
(
1992
).
4.
P.
Rudolph
and
M.
Mühlberg
, “
Basic problems of vertical Bridgman growth of CdTe
,”
Mater. Sci. Eng. B
16
,
8
16
(
1993
).
5.
S.
Brandon
and
J. J.
Derby
, “
Internal radiative transport in the vertical Bridgman growth of semitransparent crystals
,”
J. Cryst. Growth
110
,
481
500
(
1991
).
6.
S.
Kuppurao
,
J. J.
Derby
, and
S.
Brandon
, “
Modeling the vertical Bridgman growth of cadmium zinc telluride. I. Quasi-steady analysis of heat transfer and convection
,”
J. Cryst. Growth
155
,
93
102
(
1995
).
7.
R. L.
Parker
and
J. R.
Manning
, “
Application of pulse-echo ultrasonics to locate the solid/liquid interface during solidification and melting
,”
J. Cryst. Growth
79
,
341
353
(
1986
).
8.
C. K.
Jen
,
Ph.
de Heering
,
P.
Sutcliffe
, and
J. F.
Bussiere
, “
Ultrasonic monitoring of the molten zone of single crystal germanium
,”
Mater. Eval.
49
,
701
707
(
1991
).
9.
F. A.
Mauer
,
S. J.
Norton
,
Y.
Grinberg
,
D.
Pitchure
, and
H. N. G.
Wadley
, “
An ultrasonic method for reconstructing the two dimensional liquid–solid interface in solidifying bodies
,”
Metall. Trans. B
22
,
467
473
(
1991
).
10.
Yichi
Lu
and
Haydn N. G.
Wadley
, “
Two-dimensional wave propagation in cylindrical single-crystal solid–liquid bodies
,”
J. Acoust. Soc. Am.
98
,
2663
2680
(
1995
).
11.
D. T.
Queheillalt
,
Y.
Lu
, and
H. N. G.
Wadley
, “
Ultrasonic sensing of the location and shape of a solid/liquid interface
,”
J. Acoust. Soc. Am.
101
,
843
853
(
1997
).
12.
Pravin M.
Shah
, “
Ray tracing in three dimensions
,”
Geophysics
38
,
600
604
(
1973
).
13.
F. I. Fedorov, Theory of Elastic Waves in Crystals (Plenum, New York, 1968).
14.
M. J. P. Musgrave, Crystal Acoustics (Holden-Day, San Francisco, 1970).
15.
B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, FL, 1990).
16.
E. G.
Henneke
, “
Reflection-refraction of a stress wave at a plane boundary between anisotropic media
,”
J. Acoust. Soc. Am.
51
,
210
217
(
1971
).
17.
E. G.
Henneke
and
G. L.
Jones
, “
Critical angle for reflection at a liquid–solid interface in single crystals
,”
J. Acoust. Soc. Am.
59
,
204
205
(
1976
).
18.
A.
Atalar
, “
Reflection of ultrasonic waves at a liquid–solid interface
,”
J. Acoust. Soc. Am.
73
,
435
440
(
1983
).
19.
S. I.
Rokhlin
,
T. K.
Bolland
, and
L.
Adler
, “
Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media
,”
J. Acoust. Soc. Am.
79
,
906
918
(
1986
).
20.
Yu. A.
Burenkov
and
S. P.
Nikanorov
, “
Elastic properties of germanium
,”
Sov. Phys. Solid State
12
,
1940
1942
(
1971
).
21.
V. M. Glasov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Plenum, New York, 1969).
22.
V. M.
Glazov
,
A. A.
Aivazov
, and
V. I.
Timoshenko
, “
Temperature dependence of the velocity of sound in molten germanium
,”
Sov. Phys. Solid State
18
,
684
685
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.