A fast, efficient algorithm for computing acoustic fields scattered by inhomogeneous objects in an otherwise homogeneous space is presented. The algorithm, called the Recursive Green’s Function Method (RGFM), constructs the domain Green’s function by recursively combining known Green’s functions from smaller subdomains. The fields on the scatterer surface are then computed using a boundary integral formulation. Proper implementation of the RGFM results in a storage requirement of O(N) and computational costs of O(N3/2) and O(N2) for two- and three-dimensional problems, respectively, where N is the total number of discrete points in the inhomogeneous region. Results are compared with those obtained from exact solutions to show the accuracy of the method.

1.
Y. H. Pao and C. C. Mow, Diffraction of Elastic Waves and Dynamic Stress Concentrations (Crane, Russak & Co., New York, 1973).
2.
J. E.
Murphy
and
S. A.
Chin-Bing
, “
A finite-element model for ocean acoustic propagation and scattering
,”
J. Acoust. Soc. Am.
86
,
1478
1483
(
1989
).
3.
K. J.
Marfurt
, “
Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations
,”
Geophysics
49
,
533
549
(
1984
).
4.
K. R.
Kelly
,
R. W.
Ward
,
S.
Treitel
, and
R. M.
Alford
, “
Synthetic seismograms: a finite difference approach
,”
Geophysics
41
,
2
27
(
1976
).
5.
G. T.
Schuster
and
L. C.
Smith
, “
A comparison among four direct boundary integral methods
,”
J. Acoust. Soc. Am.
77
,
850
864
(
1985
).
6.
G.
Chen
and
H.
Zhou
, “
Boundary element modeling of nondissipative and dissipative waves
,”
Geophysics
59
,
113
118
(
1994
).
7.
P. C.
Waterman
, “
New formulation of acoustic scattering
,”
J. Acoust. Soc. Am.
45
,
1417
1429
(
1969
).
8.
M. G.
Imhof
, “
Multiple multipole expansions for acoustic scattering
,”
J. Acoust. Soc. Am.
97
,
754
763
(
1995
).
9.
M. G.
Imhof
, “
Scattering of acoustic and elastic waves using hybrid multiple multipole expansions–finite element technique
,”
J. Acoust. Soc. Am.
100
,
1325
1338
(
1996
).
10.
W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).
11.
J. D. Freeze and M. A. Jensen, “The recursive Green’s function method for surface integral equation analysis of inhomogeneous media,” IEEE AP-S Intl. Symp. Dig. 4, 2342–2345 (1997).
12.
K. B.
Kahen
, “
Analysis of distributed–feedback lasers using a recursive Green’s functional approach
,”
IEEE J. Quantum Electron.
29
,
368
373
(
1993
).
13.
K. B.
Kahen
, “
Analysis of distributed-feedback lasers: A recursive Green’s function approach
,”
Appl. Phys. Lett.
61
,
2012
2014
(
1992
).
14.
J. D.
Freeze
,
M. A.
Jensen
, and
R. H.
Selfridge
, “
A unified Green’s function analysis of complicated DFB lasers
,”
IEEE J. Quantum Electron.
33
,
1253
1259
(
1997
).
15.
W. C.
Chew
and
C. C.
Lu
, “
The use of Huygens’ equivalence principle for solving the volume integral equation of scattering
,”
IEEE Trans. Antennas Propag.
41
,
897
904
(
1993
).
16.
C. C.
Lu
and
W. C.
Chew
, “
The use of Huygens’ equivalence principle for solving 3-D volume integral equation of scattering
,”
IEEE Trans. Antennas Propag.
43
,
500
507
(
1995
).
17.
J. Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin, New York, 1970).
18.
C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).
This content is only available via PDF.
You do not currently have access to this content.