Mapped wave-envelope elements of variable radial order are presented for the computation of time-harmonic, unbounded, three-dimensional acoustical fields. Their application to transient problems is described in a companion article (Part II). Accuracy is assessed by a comparison of computed and analytic solutions for multi-pole fields generated by a vibrating sphere. Solutions are also presented for plane wave scattering. Elements of radial order m+l are shown to be capable of modeling multi-pole components of order m, although the provision of adequate transverse resolution is shown to be a stringent requirement, particularly at high frequencies. Ill-conditioning of the coefficient matrix limits the practical implementation of the method to elements of radial order eleven or less. The utility of the method for more general geometries is demonstrated by the presentation of computed solutions for the sound field generated by the vibration of a cylindrical piston in a plane baffle and of an idealised engine casing under anechoic conditions. The computed results are shown to be in close agreement with the analytic solution in the case of the cylindrical piston, and with a boundary element solution in the case of the engine casing.

1.
D. S.
Burnett
, “
A three dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
,”
J. Acoust. Soc. Am.
96
,
2798
2816
(
1994
).
2.
D. Givoli, Numerical Methods for Problems in Infinite Domains (Elsevier Science, Amsterdam, 1992).
3.
P. Bettess, Infinite Elements (Penshaw, Sunderland, 1992).
4.
R. D. Ciscowski and C. A. Brebbia (Eds.), Boundary Element Methods in Acoustics (Computational Mechanics Publications & Elsevier Applied Science, Southampton, 1991).
5.
H. A.
Schenk
, “
Improved integral formulation for acoustic radiation problems
,”
J. Acoust. Soc. Am.
44
,
41
58
(
1968
).
6.
A. J.
Burton
and
G. F.
Miller
, “
The application of the integral equation method to the numerical solution of some exterior boundary value problems
,”
Proc. R. Soc. London, Ser. A
323
,
201
210
(
1971
).
7.
B.
Engquist
and
A.
Madja
, “
Radiation boundary conditions for acoustic and elastic waves
,”
Commun. Pure Appl. Math.
32
,
313
357
(
1979
).
8.
A.
Bayliss
and
E.
Turkel
, “
Radiation boundary conditions for wave-like equations
,”
Commun. Pure Appl. Math.
33
,
707
725
(
1980
).
9.
A.
Bayliss
,
M.
Gunzberger
, and
E.
Turkel
, “
Boundary conditions for the numerical solution of elliptic equations in exterior regions
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
42
,
430
450
(
1982
).
10.
Y.
Kagawa
,
T.
Yamabuchi
,
K.
Sugihara
, and
T.
Shindou
, “
A finite element approach to a coupled structural acoustic radiation system with application to loudspeaker design
,”
J. Sound Vib.
69
,
229
243
(
1980
).
11.
R. K. Sigman, S. J. Horowitz, and B. T. Zinn, “Optimisation of acoustic liners by the hybrid finite element integral approach,” American Institute of Aeronautics and Astronautics, paper 83-0670 (1983).
12.
G. C.
Everstine
and
F. M.
Henderson
, “
Coupled finite element/boundary element approach for fluid-structure interaction
,”
J. Acoust. Soc. Am.
87
,
1938
1947
(
1990
).
13.
M. J.
Grote
and
J. B.
Keller
, “
On nonreflecting boundary conditions
,”
J. Comput. Phys.
122
,
231
243
(
1995
).
14.
D.
Givoli
,
I.
Patlashenko
, and
J. B.
Keller
, “
High-order boundary conditions and finite elements for infinite domains
,”
Comput. Methods Appl. Mech. Eng.
143
,
13
39
(
1997
).
15.
R. J. Astley, “FE mode-matching schemes for the exterior Helmholtz problem and their relationship to the FE-DtN approach,” Commun. Numer. Methods Eng. 12, 257–267 (1996).
16.
P.
Bettess
and
O. C.
Zienkiewicz
, “
Diffraction and refraction of surface waves using finite and infinite elements
,”
Int. J. Numer. Methods Eng.
11
,
1271
1290
(
1977
).
17.
O. C.
Zienkiewicz
,
K.
Bando
,
P.
Bettess
,
C.
Emson
, and
T. C.
Chiam
, “
Mapped infinite elements for exterior wave problems
,”
Int. J. Numer. Methods Eng.
21
,
1229
1252
(
1985
).
18.
J. P. E.
Gorranson
and
C. F.
Davidsson
, “
Three dimensional infinite element for wave propagation
,”
J. Sound Vib.
115
,
556
559
(
1987
).
19.
R. J. Astley, “Wave envelope and infinite elements for acoustic radiation,” Int. Numer. Methods Fluids 3, 507–526 (1983).
20.
R. J.
Astley
and
W.
Eversman
, “
Wave envelope elements for acoustical radiation in inhomogeneous media
,”
Comput. Struct.
30
,
801
810
(
1988
).
21.
W. Eversman, “Radiated Noise of ducted fans,” DGLR/AIAA 92-02-139, 14’th Aeroacoustics Conference, Aachen, Germany (1992).
22.
W. Eversman, “Aft fan duct acoustic radiation,” CEAS/AIAA 95-155, 16’th AIAA Aeroacoustics Conference, Munich, Germany (1995).
23.
P. Bettess, “A simple wave envelope example,” Commun. Appl. Numeri. Methods 3, 77–80 (1987).
24.
R. J.
Astley
,
G. J.
Macaulay
, and
J. P.
Coyette
, “
Mapped wave envelope elements for acoustic radiation and scattering
,”
J. Sound Vib.
170
,
97
118
(
1994
).
25.
L.
Cremers
,
K. R.
Fyfe
, and
J. P.
Coyette
, “
A variable order infinite acoustic wave envelope element
,”
J. Sound Vib.
171
,
483
508
(
1994
).
26.
B. A. Regan and J. A. Eaton, “Application of an Efficient Iterative 3D Finite element Scheme to the Fan Noise radiation Problem,” paper CEAS/AIAA–95–012, 1’st Joint CEAS/AIAA Aeroacoustics Conference, Munich (1995).
27.
K.
Gerdes
and
L.
Demkowicz
, “
Solution of 3D Laplace and Helmholtz equations in exterior domains using p-infinite elements
,”
Comput. Methods Appl. Mech. Eng.
137
,
239
273
(
1996
).
28.
R. J.
Astley
,
P.
Bettess
, and
P. J.
Clark
, “
On ‘Mapped infinite elements for exterior wave problems’ by O. C. Zienciewicz
et al.,”
Int. J. Numer. Methods Eng.
32
,
207
209
(
1991
).
29.
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (McGraw-Hill, London, 1989), 4th ed., Vol. 1, Chaps. 7 and 8.
30.
J. M. M. C.
Marques
and
D. R. J.
Owen
, “
Infinite elements in quasi-static materially nonlinear problems
,”
Comput. Struct.
18
,
739
751
(
1984
).
31.
G. J. Macaulay, “Wave Envelope Elements for Acoustics,” Ph.D. thesis, University of Canterbury (1995).
32.
M. C. Junger and D. Feit, Sound, Structure and Their Interactions (MIT, Cambridge, 1972).
This content is only available via PDF.
You do not currently have access to this content.