This paper presents analytic formulas for the group velocity of quasilongitudinal, quasitransverse, and shear-horizontally polarized pure-transverse modes propagating in an arbitrary direction on the symmetry planes of a stressed anisotropic elastic medium with orthotropic or higher symmetry. The group velocity equations are expressed in terms of the thermodynamic elastic stiffness coefficients and stresses acting on the medium. An example is provided with a (001) silicon crystal compressed at uniaxial stress.
REFERENCES
1.
M. J. P. Musgrave, Crystal Acoustics (Holden-Day, San Francisco, 1970).
2.
B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, FL, 1990), 2nd ed., Vol. 1.
3.
J. F.
Havlice
, W. L.
Bond
, and L. B.
Wigton
, “Elastic poynting vector in a piezoelectric medium
,” IEEE Trans. Sonics Ultrason.
SU-17
, 246
–249
(1970
).4.
A. G.
Every
, “General closed-form expressions for acoustic waves in elastically anisotropic solids
,” Phys. Rev. B
22
, 1746
–1760
(1980
).5.
K. Y.
Kim
, “Analytical relations between the elastic constants and the group velocity in an arbitrary direction of symmetry planes of media with orthorhombic or higher symmetry
,” Phys. Rev. B
49
, 3713
–3724
(1994
).6.
K. Y.
Kim
and W.
Sachse
, “Determination of all elastic constants of transversely isotropic media with a cusp around the symmetric axis by use of elastic pulses propagating in two principal directions
,” Phys. Rev. B
47
, 10
993
11
000
(1993
).7.
K. Y.
Kim
, R.
Sribar
, and W.
Sachse
, “Analytical and optimization procedures for determination of all elastic constants of anisotropic solids from group velocity data measured in symmetry planes
,” J. Appl. Phys.
77
, 5589
–5600
(1995
).8.
K. Y.
Kim
, T.
Ohtani
, A. R.
Baker
, and W.
Sachse
, “Determination of all elastic constants of orthotropic plate specimens from group velocity data
,” Res. Nondestruct. Eval.
7
, 13
–29
(1995
).9.
K. Y.
Kim
, A. G.
Every
, and W.
Sachse
, “Determination of the elastic constants of anisotropic solids from group velocities measured in symmetry directions
,” Int. J. Mod. Phys. B
10
, 235
–246
(1996
).10.
L.
Wang
, “Determination of the ray surface and recovery of elastic constants of anisotropic elastic media: Direct and inverse approach
,” J. Phys.: Condens. Matter
7
, 3863
–3880
(1995
).11.
R. A.
Toupin
and B.
Bernstein
, “Sound waves in deformed perfectly elastic materials. Acoustoelastic effect
,” J. Acoust. Soc. Am.
33
, 216
–225
(1961
).12.
R. N.
Thurston
, “Effective elastic coefficients for wave propagation in crystals under stress
,” J. Acoust. Soc. Am.
37
, 348
–356
(1965
).13.
R. N. Thurston, “Waves in solids,” in Handbuch der Physik Vol. VIa/4, Chief Editor: S. Flügge, Mechanics of Solids VI, Editor: C. Truesdell (Springer-Verlag, New York, 1974), pp. 109–308.
14.
Y. H. Pao, W. Sachse, and H. Fukuoka, “Acoustoelasticity and ultrasonic measurements of residual stresses,” in Physical Acoustics, Vol. 17, edited by W. P. Mason and R. N. Thurston (Academic, New York, 1984), pp. 62–143.
15.
A. L.
Ruoff
, H.
Xia
, and Q.
Xia
, “The effect of a tapered aperture on x-ray diffraction from a sample with a pressure gradient: Studies on three samples with a maximum pressure of 560 GPa
,” Rev. Sci. Instrum.
63
, 4342
–4348
(1992
).16.
K.
Huang
, “On the atomic theory of elasticity
,” Proc. R. Soc. London, Ser. A
203
, 178
–194
(1950
).17.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).
18.
K. Y.
Kim
, “Thermodynamics at finite deformation of an anisotropic elastic solid
,” Phys. Rev. B
54
, 6245
–6254
(1996
).19.
K. Y.
Kim
and W.
Sachse
, “The theory of thermodynamic-acoustoelastic stress gauge
,” J. Appl. Phys.
80
, 4934
–4943
(1996
).20.
G. A. Northrop and J. P. Wolfe, “Phonon imaging: Theory and applications,” in Nonequilibrium Phonon Dynamics, edited by W. E. Bron (Plenum, New York, 1985), pp. 165–242.
21.
A. G.
Every
, “Formation of phonon-focusing caustics in crystals
,” Phys. Rev. B
34
, 2852
–2862
(1986
).22.
R. N.
Thurston
and K.
Brugger
, “Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media
,” Phys. Rev. A
133
, 1604
–1610
(1964
).23.
J. J.
Hall
, “Electronic effects in the elastic constants of -type silicon
,” Phys. Rev.
161
, 756
–761
(1967
).24.
R. F. S. Hearmon, Numerical Data and Functional Relationships in Science and Technology, Ländolt-Bernstein, edited by K.-H. Hellwege and A. M. Hellwege (Springer-Verlag, New York, 1979), New Series, Group III, Vol. 11.
25.
R. B.
King
and M.
Fortunko
, “Determination of in-plane residual stress states in plates using horizontally polarized shear waves
,” J. Appl. Phys.
54
, 3027
–3035
(1983
).26.
C. S.
Man
and W. Y.
Lu
, “Towards an acoustoelastic theory for measurement of residual stresses
,” J. Elast.
17
, 159
–182
(1987
).27.
K. Y.
Kim
, K. C.
Bretz
, A. G.
Every
, and W.
Sachse
, “Ultrasonic imaging of the group velocity surfaces about the cubic axis in silicon
,” J. Appl. Phys.
79
, 1857
–1863
(1996
).28.
J. R.
Macdonald
, “Review of some experimental and analytical equations of state
,” Rev. Mod. Phys.
41
, 316
–349
(1969
).29.
G. R.
Barsch
and Z. P.
Chang
, “Adiabatic, isothermal, and intermediate pressure derivatives of the elastic constants for cubic symmetry
,” Phys. Status Solidi
19
, 139
–151
(1969
).
This content is only available via PDF.
© 1997 Acoustical Society of America.
1997
Acoustical Society of America
You do not currently have access to this content.