A multi-channel model, describing the effects of spectral and temporal integration in amplitude-modulation detection for a stochastic noise carrier, is proposed and validated. The model is based on the modulation filterbank concept which was established in the accompanying paper [Dau et al., J. Acoust. Soc. Am. 102, 2892–2905 (1997)] for modulation perception in narrow-band conditions (single-channel model). To integrate information across frequency, the detection process of the model linearly combines the channel outputs. To integrate information across time, a kind of “multiple-look” strategy, is realized within the detection stage of the model. Both data from the literature and new data are used to validate the model. The model predictions agree with the results of Eddins [J. Acoust. Soc. Am. 93, 470–479 (1993)] that the “time constants” associated with the temporal modulation transfer functions (TMTF) derived for narrow-band stimuli do not vary with carrier frequency region and that they decrease monotonically with increasing stimulus bandwidth. The model is able to predict masking patterns in the modulation-frequency domain, as observed experimentally by Houtgast [J. Acoust. Soc. Am. 85, 1676–1680 (1989)]. The model also accounts for the finding by Sheft and Yost [J. Acoust. Soc. Am. 88, 796–805 (1990)] that the long “effective” integration time constants derived from the data are two orders of magnitude larger than the time constants derived from the cutoff frequency of the TMTF. Finally, the temporal-summation properties of the model allow the prediction of data in a specific temporal paradigm used earlier by Viemeister and Wakefield [J. Acoust. Soc. Am. 90, 858–865 (1991)]. The combination of the modulation filterbank concept and the optimal decision algorithm proposed here appears to present a powerful strategy for describing modulation-detection phenomena in narrow-band and broadband conditions.

1.
Berg
,
B. G.
(
1996
). “
On the relation between comodulation masking release and temporal modulation transfer functions
,”
J. Acoust. Soc. Am.
100
,
1013
1024
.
2.
Boer, E. de (1985). “Auditory Time Constants: A Paradox?” in Time Resolution in Auditory Systems, edited by A. Michelsen (Springer-Verlag, Berlin), pp. 141–158.
3.
Bos
,
C. E.
, and
Boer
,
E. de
(
1966
). “
Masking and discrimination
,”
J. Acoust. Soc. Am.
39
,
708
715
.
4.
Cohen
,
M. F.
, and
Schubert
,
E. T.
(
1987
). “
The effect of cross-spectrum correlation on the detectability of a noise band
,”
J. Acoust. Soc. Am.
81
,
721
723
.
5.
Dau, T. (1996). “Modeling auditory processing of amplitude modulation,” Doctoral thesis, University of Oldenburg.
6.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996a
). “
A quantitative model of the “effective” signal processing in the auditory system: I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
7.
Dau
,
T.
,
Kollmeier
,
D.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation: I. Detection and masking with narrowband carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
8.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996b
). “
A quantitative model of the “effective” signal processing in the auditory system: II. Simulations and measurements
,”
J. Acoust. Soc. Am.
99
,
3623
3631
.
9.
Eddins
,
D.
(
1993
). “
Amplitude modulation detection of narrow-band noise: Effects of absolute bandwidth and frequency region
,”
J. Acoust. Soc. Am.
93
,
470
479
.
10.
Egan
,
J. P.
,
Lindner
,
W. A.
, and
McFadden
,
D.
(
1969
). “
Masking-level differences and the form of the psychometric function
,”
Percept. Psychophys.
6
,
209
215
.
11.
Formby
,
C.
, and
Muir
,
K.
(
1988
). “
Modulation and gap detection for broadband and filtered noise signals
,”
J. Acoust. Soc. Am.
84
,
545
550
.
12.
Forrest
,
T. G.
, and
Green
,
D. M.
(
1987
). “
Detection of partially filled gaps in noise and the temporal modulation transfer function
,”
J. Acoust. Soc. Am.
82
,
1933
1943
.
13.
Grantham
,
D. W.
, and
Bacon
,
S. P.
(
1991
). “
Binaural modulation masking
,”
J. Acoust. Soc. Am.
89
,
1340
1349
.
14.
Green
,
D. M.
(
1960
). “
Auditory detection of a noise signal
,”
J. Acoust. Soc. Am.
32
,
121
131
.
15.
Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics (Wiley, New York).
16.
Hall, J. W., III (1987). “Experiments on comodulation masking release,” in Auditory Processing of Complex Sounds, edited by W. A. Yost and C. S. Watson (Erlbaum, Hillsdale, NJ).
17.
Holube
,
I.
,
Colburn
,
H. S.
,
van de Par
,
S.
, and
Kohlrausch
,
A.
(
1995a
). “
Model simulations of masked thresholds for tones in dichotic noise maskers
,”
J. Acoust. Soc. Am.
97
,
3411
3412
.
18.
Holube, I., Colburn, H. S., van de Par, S., and Kohlrausch, A. (1995b). “Simulationen der Mithörschwellen von Testtönen in dichotischen Rauschmaskierern,” Fortschritte der Akustik, DAGA ’95, pp. 783–786.
19.
Houtgast
,
T.
(
1989
). “
Frequency selectivity in amplitude-modulation detection
,”
J. Acoust. Soc. Am.
85
,
1676
1680
.
20.
Lawson, J. L., and Uhlenbeck, G. E. (1950). Threshold Signals, Volume 24 of Radiation Laboratory Series (McGraw-Hill, New York).
21.
Maiwald, D. (1966). “Zusammenhang zwischen Mithörschwellen und Modulationsschwellen,” Doctoral thesis, Technical University of München.
22.
Maiwald
,
D.
(
1967a
). “
Ein Funktionsschema des Gehörs zur Beschreibung der Erkennbarkeit kleiner Frequenz- und Amplitudenänderungen
,”
Acustica
18
,
81
92
.
23.
Maiwald
,
D.
(
1967b
). “
Die Berechnung von Modulationsschwellen mit Hilfe eines Funktionsschemas
,”
Acustica
18
,
193
207
.
24.
McFadden
,
D.
(
1987
). “
Comodulation detection differences using noise-band signals
,”
J. Acoust. Soc. Am.
81
,
1519
1527
.
25.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
,
Plack
,
C. J.
, and
Biswas
,
A. K.
(
1988
). “
The shape of the ear’s temporal window
,”
J. Acoust. Soc. Am.
83
,
1102
1116
.
26.
Münkner, S., and Kohlrausch, A. (1997). “Simulations of temporal resolution and integration experiments using a modulation filterbank model” (in preparation).
27.
Oxenham
,
A. J.
, and
Moore
,
B. C. J.
(
1994
). “
Modeling the additivity of nonsimultaneous masking
,”
Hearing Res.
80
,
105
118
.
28.
Patterson, R. D., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1987). “An efficient auditory filterbank based on the gammatone function,” in Paper presented at a meeting of the IOC Speech Group on Auditory Modelling at RSRE, 14–15 December.
29.
Penner
,
M. J.
(
1978
). “A power law transformation resulting in a class of short-term integrators that produce time-intensity trades for noise bursts,”
J. Acoust. Soc. Am.
63
,
195
201
.
30.
Püschel, D. (1988). “Prinzipien der zeitlichen Analyse beim Hören,” Doctoral thesis, University of Göttingen.
31.
Rodenburg, M. (1972). “Sensitivity of the auditory system to differences in intensity,” Doctoral thesis, Medical Faculty of Rotterdam.
32.
Rodenburg, M. (1977). “Investigations of temporal effects with amplitude modulated signals,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, London), pp. 429–437.
33.
Schacknow
,
P. N.
, and
Raab
,
D. H.
(
1976
). “
Noise-intensity discrimination: Effects of bandwidth conditions and mode of masker presentation
,”
J. Acoust. Soc. Am.
60
,
893
905
.
34.
Schreiner
,
C.
, and
Langner
,
G.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanism
,”
J. Neurophysiol.
60
,
1799
1822
.
35.
Sheft
,
S.
, and
Yost
,
W.
(
1990
). “
Temporal integration in amplitude modulation detection
,”
J. Acoust. Soc. Am.
88
,
796
805
.
36.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1997
). “
The effects of frequency region and bandwidth on the temporal modulation transfer function
,”
J. Acoust. Soc. Am.
102
,
1799
1810
.
37.
van Zanten, G. A. (1980). “Temporal modulation transfer functions for intensity modulated noise bands,” in Psychophysical and Behavioral Studies in Hearing, edited by G. van den Brink and F. A. Bilsen (Delft U.P., Delft, The Netherlands), pp. 206–209.
38.
Verhey, J. L., and Dau, T. (1996). “Simulations of spectral masking with a model incorporating an optimal decision strategy,” in Psychoacoustics, Speech, and Hearing Aids, edited by B. Kollmeier (World Scientific, Singapore), pp. 29–34.
39.
Viemeister, N. F. (1977). “Temporal factors in audition: a system analysis approach,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, London), pp. 419–427.
40.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
41.
Viemeister
,
N. F.
, and
Wakefield
,
G. H.
(
1991
). “
Temporal integration and multiple looks
,”
J. Acoust. Soc. Am.
90
,
858
865
.
42.
Yost
,
W. A.
, and
Sheft
,
S.
(
1989
). “
Across critical band processing of amplitude modulated tones
,”
J. Acoust. Soc. Am.
85
,
848
857
.
43.
Yost
,
W. A.
,
Sheft
,
S.
, and
Opie
,
J.
(
1989
). “
Modulation interference in detection and discrimination of amplitude modulation
,”
J. Acoust. Soc. Am.
86
,
2138
2147
.
44.
Zwislocki
,
J. J.
,
Hellman
,
R. P.
, and
Verillo
,
R. T.
(
1962
). “
Threshold of audibility for short pulses
,”
J. Acoust. Soc. Am.
34
,
1648
1652
.
This content is only available via PDF.
You do not currently have access to this content.