This paper presents a quantitative model for describing data from modulation-detection and modulation-masking experiments, which extends the model of the “effective” signal processing of the auditory system described in Dau et al. [J. Acoust. Soc. Am. 99, 3615–3622 (1996)]. The new element in the present model is a modulation filterbank, which exhibits two domains with different scaling. In the range 0–10 Hz, the modulation filters have a constant bandwidth of 5 Hz. Between 10 Hz and 1000 Hz a logarithmic scaling with a constant Q value of 2 was assumed. To preclude spectral effects in temporal processing, measurements and corresponding simulations were performed with stochastic narrow-band noise carriers at a high center frequency (5 kHz). For conditions in which the modulation rate (fmod) was smaller than half the bandwidth of the carrier (Δf), the model accounts for the low-pass characteristic in the threshold functions [e.g., Viemeister, J. Acoust. Soc. Am. 66, 1364–1380 (1979)]. In conditions with fmod>Δf/2, the model can account for the high-pass characteristic in the threshold function. In a further experiment, a classical masking paradigm for investigating frequency selectivity was adopted and translated to the modulation-frequency domain. Masked thresholds for sinusoidal test modulation in the presence of a competing modulation masker were measured and simulated as a function of the test modulation rate. In all cases, the model describes the experimental data to within a few dB. It is proposed that the typical low-pass characteristic of the temporal modulation transfer function observed with wide-band noise carriers is not due to “sluggishness” in the auditory system, but can instead be understood in terms of the interaction between modulation filters and the inherent fluctuations in the carrier.

1.
Bacon
,
S. P.
, and
Grantham
,
D. W.
(
1989
). “
Modulation masking: Effects of modulation frequency, depth, and phase
,”
J. Acoust. Soc. Am.
85
,
2575
2580
.
2.
Burns
,
E. M.
, and
Viemeister
,
N.
(
1981
). “
Played again SAM: Further observations on the pitch of amplitude-modulated noise
,”
J. Acoust. Soc. Am.
70
,
1655
1660
.
3.
Creutzfeldt
,
O. D.
,
Hellweg
,
F. C.
, and
Schreiner
,
C. E.
(
1980
). “
Thalamocortical transformation of responses to complex auditory stimuli
,”
Exp. Brain Res.
39
,
87
104
.
4.
Dau, T. (1996). “Modeling auditory processing of amplitude modulation,” Doctoral thesis, University of Oldenburg.
5.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration
,”
J. Acoust. Soc. Am.
102
,
2906
2919
.
6.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996a
). “
A quantitative model of the “effective” signal processing in the auditory system: I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
7.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996b
). “
A quantitative model of the “effective” signal processing in the auditory system: II. Simulations and measurements
,”
J. Acoust. Soc. Am.
99
,
3623
3631
.
8.
Eddins
,
D.
(
1993
). “
Amplitude modulation detection of narrow-band noise: Effects of absolute bandwidth and frequency region
,”
J. Acoust. Soc. Am.
93
,
470
479
.
9.
Fassel, R. (1994). “Experimente und Simulationsrechnungen zur Wahrnehmung von Amplitudenmodulationen im menschlichen Gehör,” Doctoral thesis, University of Göttingen.
10.
Fassel, R., and Kohlrausch, A. (1995). “Modulation detection as a function of carrier frequency and level,” IPO Annual Progress Report 30, 21–29.
11.
Fassel
,
R.
, and
Kohlrausch
,
A.
(
1996
). “
Sinusoidal amplitude modulation thresholds as a function of carrier frequency and level
,”
J. Acoust. Soc. Am.
99
,
2566
.
12.
Fassel, R., and Püschel, D. (1993). “Modulation detection and masking using deterministic and random maskers,” in Contributions to Psychological Acoustics, edited by A. Schick (Universitätsgesellschaft Oldenburg, Oldenburg), pp. 419–429.
13.
Fassel, R., Kohlrausch, A., and Dau, T. (1997). “The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers,” submitted to J. Acoust. Soc. Am.
14.
Fleischer
,
H.
(
1981
). “
Amplitudenmodulation von Terzrauschen: Experimente und theoretische Ergebnisse
,”
Acustica
47
,
155
163
.
15.
Fleischer
,
H.
(
1982a
). “
Modulationsschwellen von Schmalbandrauschen
,”
Acustica
51
,
154
161
.
16.
Fleischer
,
H.
(
1982b
). “
Calculating psychoacoustic parameters of amplitude modulated narrow noise bands
,”
Biol. Cybern.
44
,
177
184
.
17.
Fleischer, H. (1983). “Modulation thresholds of narrow noise bands,” Proceedings of the 11th ICA, Paris 1983, pp. 99–102.
18.
Forrest
,
T. G.
, and
Green
,
D. M.
(
1987
). “
Detection of partially filled gaps in noise and the temporal modulation transfer function
,”
J. Acoust. Soc. Am.
82
,
1933
1943
.
19.
Goldstein
,
J. L.
(
1967
). “
Auditory spectral filtering and monaural phase perception
,”
J. Acoust. Soc. Am.
41
,
458
479
.
20.
Green
,
D. M.
(
1973
). “
Temporal acuity as a function of frequency
,”
J. Acoust. Soc. Am.
54
,
373
379
.
21.
Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics (Wiley, New York).
22.
Hartmann
,
W. M.
, and
Pumplin
,
J.
(
1988
). “
Noise power fluctuation and the masking of sine signals
,”
J. Acoust. Soc. Am.
83
,
2277
2289
.
23.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1994
). “
A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus
,”
J. Acoust. Soc. Am.
95
,
2145
2159
.
24.
Holube
,
I.
, and
Kollmeier
,
B.
(
1996
). “
Speech intelligibility prediction in hearing-impaired listeners based on a psychoacoustically motivated perception model
,”
J. Acoust. Soc. Am.
100
,
1703
1716
.
25.
Houtgast
,
T.
(
1989
). “
Frequency selectivity in amplitude-modulation detection
,”
J. Acoust. Soc. Am.
85
,
1676
1680
.
26.
Kohlrausch
,
A.
,
Fassel
,
R.
,
van der Heijden
,
M.
,
Kortekaas
,
R.
,
van de Par
,
S.
,
Oxenham
,
A.
, and
Püschel
,
D.
(
1997
). “
Detection of tones in low-noise noise: Further evidence for the role of envelope fluctuations
,”
Acust. Acta Acust.
83
,
659
669
.
27.
Kollmeier
,
B.
,
Dau
,
T.
,
Hansen
,
M.
, and
Holube
,
I.
(
1996
). “
An Auditory-Model Framework for Psychoacoustics and Speech Perception and its Applications,” Proceedings of the First Forum Acusticum, Antwerpen, published in
Acust. Acta Acust.
82, Suppl. 1
,
89
.
28.
Langner
,
G.
(
1992
). “
Periodicity coding in the auditory system
,”
Hearing Res.
60
,
115
142
.
29.
Langner
,
G.
, and
Schreiner
,
C.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanism
,”
J. Neurophysiol.
60
,
1799
1822
.
30.
Lawson, J. L., and Uhlenbeck, G. E. (1950). Threshold Signals, Volume 24 of Radiation Laboratory Series (McGraw-Hill, New York).
31.
Levitt
,
H.
(
1971
). “
Transformed up–down procedures in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
32.
Maiwald
,
D.
(
1967a
). “
Ein Funktionsschema des Gehörs zur Beschreibung der Erkennbarkeit kleiner Frequenz- und Amplitudenänderungen
,”
Acustica
18
,
81
92
.
33.
Maiwald
,
D.
(
1967b
). “
Die Berechnung von Modulationsschwellen mit Hilfe eines Funktionsschemas
,”
Acustica
18
,
193
207
.
34.
Martens
,
J. P.
(
1982
). “
A new theory for multitone masking
,”
J. Acoust. Soc. Am.
72
,
397
405
.
35.
Moore, B. C. J., and Glasberg, B. R. (1986). “The role of frequency selectivity in the perception of loudness, pitch and time,” in Frequency Selectivity in Hearing, edited by B. C. J. Moore (Academic, London), pp. 251–308.
36.
Münkner, S. (1993). “Modellentwicklung und Messungen zur Wahrnehmung nichtstationärer Signale,” Doctoral thesis, University of Göttingen.
37.
Münkner, S., and Püschel, D. (1993). “A psychoacoustical model for the perception of non-stationary sounds,” in Contributions to Psychological Acoustics, edited by A. Schick (Universitätsgesellschaft Oldenburg, Oldenburg), pp. 121–134.
38.
Palmer, A. R. (1982). “Encoding of rapid amplitude modulations by cochlear-nerve fibers in the guinea pig,” Arch. Otorhinolaryngol. 236, 197–202.
39.
Patterson, R. D., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1987). “An efficient auditory filterbank based on the gammatone function,” in Paper presented at a meeting of the IOC Speech Group on Auditory Modelling at RSRE, December 14–15.
40.
Püschel, D. (1988). “Prinzipien der zeitlichen Analyse beim Hören,” Doctoral thesis, University of Göttingen.
41.
Ronken
,
D. A.
(
1970
). “
Monaural detection of a phase difference in clicks
,”
J. Acoust. Soc. Am.
47
,
1091
1099
.
42.
Schreiner, C., and Langner, G. (1984). “Representation of periodicity information in the inferior colliculus of the cat,” Soc. Neurosci. Abstr. 10, 395.
43.
Schreiner
,
C.
, and
Urbas
,
J. V.
(
1988
). “
Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields
,”
Hearing Res.
32
,
49
65
.
44.
Sheft
,
S.
, and
Yost
,
W.
(
1990
). “
Temporal integration in amplitude modulation detection
,”
J. Acoust. Soc. Am.
88
,
796
805
.
45.
Smith
,
R.
, and
Zwislocki
,
J.
(
1975
). “
Short-term adaptation and incremental responses of single auditory-nerve fibers
,”
Biol. Cybern.
17
,
169
182
.
46.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1996
). “
Cues for discrimination of envelopes
,”
J. Acoust. Soc. Am.
99
,
3638
3646
.
47.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1997
). “
The effects of frequency region and bandwidth on the temporal modulation transfer function
J. Acoust. Soc. Am.
102
,
1799
1810
.
48.
Strube
,
H. W.
(
1985
). “
A computationally efficient basilar-membrane model
,”
Acustica
58
,
207
214
.
49.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
50.
Viemeister, N. F., and Plack, C. J. (1993). “Time analysis,” in Human Psychophysics, edited by W. A. Yost, A. N. Popper, and R. R. Fay (Springer-Verlag, New York), pp. 116–154.
51.
Wier
,
C.
,
Jesteadt
,
W.
, and
Green
,
D. M.
(
1977
). “
Frequency discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
61
,
178
184
.
52.
Westerman
,
L.
, and
Smith
,
R.
(
1984
). “
Rapid and short-term adaptation in auditory nerve responses
,”
Hearing Res.
15
,
249
260
.
53.
Yost
,
W. A.
,
Sheft
,
S.
, and
Opie
,
J.
(
1989
). “
Modulation interference in detection and discrimination of amplitude modulation
,”
J. Acoust. Soc. Am.
86
,
2138
2147
.
54.
Zwicker
,
E.
(
1952
). “
Die Grenzen der Hörbarkeit der Amplitudenmodulation und der Frequenzmodulation eines Tones
,”
Acustica
2
,
125
133
.
55.
Zwicker
,
E.
(
1953
). “
Die Veränderung der Modulationsschwellen durch verdeckende Töne und Geräusche
,”
Acustica
3
,
274
278
.
56.
Zwicker
,
E.
(
1956
). “
Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs
,”
Acustica
6
,
365
381
.
This content is only available via PDF.
You do not currently have access to this content.