The scattering of elastic waves in a half-space containing a striplike crack is investigated. As a special case it seems that the crack may be surface breaking. A surface integral equation with the half-space Green tensor is employed. The key point of the method is the expansion of the Green tensor in Fourier representations with the free part of the Green tensor expanded in the crack coordinate system and the half-space part in the half-space coordinate system. The integral equation is discretized by expanding the crack opening displacement in terms of Chebyshew functions having the correct square root behavior along the crack edges. The incident field is emitted from an ultrasonic probe and a recent model for this is employed. The signal response in another (or the same) probe is modeled by a reciprocity argument and the stationary phase approximation is employed to simplify the final answer, which is thus only valid in the far field of the probes (yielding essentially a spherical wave). Numerical results are given and are compared with both other methods and with available experiments.

1.
R. K.
Chapman
, “
A system model for the ultrasonic inspection of smooth planar cracks
,”
J. Nondestruct. Eval.
9
,
197
211
(
1990
).
2.
J. M. Coffey and R. K. Chapman, “Application of elastic scattering theory for smooth flat cracks to the quantitative prediction of ultrasonic defect detection and sizing,” Nucl. Energy 22, 319–333 (1983).
3.
P.
Fellinger
,
R.
Marklein
,
K. J.
Langenberg
, and
S.
Klaholz
, “
Numerical modeling of elastic wave propagation and scattering with EFIT-elastodynamic finite integration technique
,”
Wave Motion
21
,
47
66
(
1995
).
4.
W.
Lord
,
R.
Ludwig
, and
Z.
You
, “
Developments in ultrasonic modeling with finite element analysis
,”
J. Nondestruct. Eval.
9
,
129
143
(
1990
).
5.
K.
Harumi
and
M.
Uchida
, “
Computer simulation of ultrasonics and its applications
,”
J. Nondestruct. Eval.
9
,
81
99
(
1990
).
6.
B.
Nouailhas
,
G.
Van Chi Nguyen
,
F.
Pons
, and
S.
Vermersch
, “
Ultrasonic modeling and experiments: an industrial case: bimetallic weld in nuclear power plant
,”
J. Nondestruct. Eval.
9
,
145
153
(
1990
).
7.
A.
Minachi
,
J.
Mould
, and
R. B.
Thompson
, “
Ultrasonic beam propagation through a bimetallic weld—a comparison of predictions of the Gauss–Hermite beam model and finite element model
,”
J. Nondestruct. Eval.
12
,
151
158
(
1993
).
8.
T.
Lawn
,
M.
Veda
, and
M.
Tabei
, “
Ultrasonic scattering from a simulated cavity in steel
,”
J. Acoust. Soc. Am.
98
,
2809
2818
(
1995
).
9.
A.
Lhémery
, “
Impulse-response method to predict echo responses from defects in solids. Part 1. Theory
,”
J. Acoust. Soc. Am.
98
,
2197
2208
(
1995
).
10.
A.
Boström
and
H.
Wirdelius
, “
Ultrasonic probe modeling and nondestructive crack detection
,”
J. Acoust. Soc. Am.
97
,
2836
2848
(
1995
).
11.
K. J. Langenberg, P. Fellinger, R. Marklein, P. Zanger, K. Meyer, and T. Kreutler, “Inverse methods and imaging,” in Evaluation of Materials and Structures by Quantitative Ultrasonics, edited by J. D. Achenbach (Springer-Verlag, Vienna, 1993).
12.
R. J.
Brind
and
J. D.
Achenbach
, “
Scattering of longitudinal and transverse waves by a sub-surface crack
,”
J. Sound Vib.
78
,
555
563
(
1981
).
13.
Y. C.
Angel
and
J. D.
Achenbach
, “
Reflection and transmission of obliquely incident Rayleigh waves by a surface-breaking crack
,”
J. Acoust. Soc. Am.
75
,
313
319
(
1984
).
14.
V. K.
Kinra
and
B. Q.
Vu
, “
Diffraction of Rayleigh waves in a half-space. II. Inclined edge crack
,”
J. Acoust. Soc. Am.
79
,
1688
1692
(
1986
).
15.
N.
Saffari
and
L. J.
Bond
, “
Body to Rayleigh wave mode-conversion at steps and slots
,”
J. Nondestruct. Eval.
6
,
1
22
(
1987
).
16.
C. L.
Scandrett
and
J. D.
Achenbach
, “
Time-domain finite difference calculations for interaction of an ultrasonic wave with a surfacebreaking crack
,”
Wave Motion
9
,
171
190
(
1987
).
17.
Ch.
Zhang
and
J. D.
Achenbach
, “
Scattering of body waves by an inclined surface-breaking crack
,”
Ultrasonics
26
,
132
138
(
1988
).
18.
W.
Lin
and
L. M.
Kerr
, “
Scattering by horizontal subsurface pennyshaped crack
,”
Proc. R. Soc. London, Ser. A
408
,
227
294
(
1986
).
19.
Ch.
Zhang
and
J. D.
Achenbach
, “
Dispersion and attenuation of surface waves due to distributed surface-breaking cracks
,”
J. Acoust. Soc. Am.
88
,
1986
1992
(
1990
).
20.
L.
Guan
and
A.
Norris
, “
Elastic wave scattering by rectangular cracks
,”
Int. J. Solids Struct.
29
,
1549
1565
(
1992
).
21.
S.
Krenk
and
H.
Schmidt
, “
Elastic wave scattering by a circular crack
,”
Philos. Trans. R. Soc. London, Ser. A
308
,
167
198
(
1982
).
22.
A.
Boström
, “
Acoustic scattering by a sound-hard rectangle
,”
J. Acoust. Soc. Am.
90
,
3344
3347
(
1991
).
23.
P. A.
Martin
and
F. J.
Rizzo
, “
On boundary integral equations for crack problems
,”
Proc. R. Soc. London, Ser. A
421
,
341
355
(
1989
).
24.
A. Boström, G. Kristensson, and S. Ström, “Transformation properties of plane, spherical and cylindrical scalar and vector wave functions,” in Field Representations and Introduction to Scattering, edited by V. V. Varadan, A. Lakhtakia, and V. K. Varadan (Elsevier, Amsterdam, 1991).
25.
B. A.
Auld
, “
General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients
,”
Wave Motion
1
,
3
10
(
1979
).
26.
F. Lakestani, “Validation of mathematical models of the ultrasonic inspection of steel components,” PISC III rep. 16, JRC, Inst. Adv. Mat. Petten, The Netherlands (1992).
27.
A. Boström and P. Bövik, report to be published.
28.
R. K. Chapman (private communication).
29.
F. L. Becker, S. R. Doctor, P. G. Heasler, C. J. Morris, S. G. Pitman, G. P. Selby, and F. A. Simonen, “Integration of NDE reliability and fracture mechanics,” NURE/CR 1696, PNL-3469, VR. 1, U.S. Nuclear Regulatory Commission (1981).
This content is only available via PDF.
You do not currently have access to this content.