A unified theory of sound propagation in saturated marine sediments is developed on the basis of a linear wave equation, which includes a new dissipation term representing internal losses arising from interparticle contacts. This loss mechanism, which shows a “memory” or hysteresis, is proposed as being responsible for the acoustic properties of sediments. To accommodate the memory, the loss term in the wave equation is formulated as a temporal convolution between the particle velocity and a material response function, h(t), which varies as t−n, where 0<n<1. The compressional wave that emerges from the analysis shows: (1) an attenuation that scales almost exactly as the first power of frequency (corresponding to a constant Q) over an unlimited number of decades; and (2) weak logarithmic dispersion. As well as being characteristic of the wave properties of actual marine sediments, the predicted attenuation and dispersion are consistent with the Kronig–Kramers relationships. The theory also leads to pulse propagation that is strictly causal, which, although a necessary requirement, is an issue that has been widely debated in the literature in the context of an attenuation that is proportional to frequency. Finally, the wave properties (phase speed and attenuation) are related to the mechanical properties (grain size, density, and porosity) of a sediment by combining the Hertz theory of particles in contact with a new, rough-surface, random-packing model of mineral grains in unconsolidated granular media. The resultant relationships between the acoustical and mechanical properties (e.g., sound speed and porosity) of marine sediments are shown to follow the trends of published experimental data sets very closely.

1.
A. C.
Kibblewhite
, “
Attenuation of sound in marine sediments: A review with emphasis on new low frequency data
,”
J. Acoust. Soc. Am.
86
,
716
738
(
1989
).
2.
R. D.
Mindlin
, “
Compliance of elastic bodies in contact
,”
J. Appl. Mech.
16
,
259
268
(
1949
).
3.
M. N.
Toksöz
,
D. H.
Johnston
, and
A.
Timur
, “
Attenuation of seismic waves in dry and saturated rocks, I. Laboratory measurements
,”
Geophysics
44
,
681
690
(
1979
).
4.
D. H.
Johnston
,
M. N.
Toksöz
, and
A.
Timur
, “
Attenuation of seismic waves in dry and saturated rocks, II. Mechanisms
,”
Geophysics
44
,
691
711
(
1979
).
5.
K. W.
Winkler
and
A.
Nur
, “
Seismic attenuation: Effects of pore fluids and frictional sliding
,”
Geophysics
47
,
1
15
(
1982
).
6.
E. L.
Hamilton
, “
Sound attenuation as a function of depth in the sea floor
,”
J. Acoust. Soc. Am.
59
,
528
535
(
1976
).
7.
E. L. Hamilton, “Acoustic properties of sediments,” in Acoustics and the Ocean Bottom, edited by A. Lara-Saenz, C. Ranz Cuierra, and C. Carbo-Fité (Consejo Superior de Investigacions Investigacions Cientificas, Madrid, 1987), pp. 3–58.
8.
L. Bjo/rno/, “Features of the linear and non-linear acoustics of water-saturated marine sediments,” Technical University of Denmark, Report number AFM 76-06 (1976).
9.
M. N. Toksöz and D. H. Johnston, “Seismic Wave Attenuation,” in Geophysics Reprint Series, No. 2 (Society of Exploration Geophysicists, Tulsa, OK, 1981).
10.
E.
Strick
, “
Predicted pedestal effect for pulse propagation in constant-Q solids
,”
Geophysics
35
,
387
403
(
1970
).
11.
R. W.
Morse
, “
Acoustic propagation in granular media
,”
J. Acoust. Soc. Am.
24
,
696
700
(
1952
).
12.
J. W. S. Baron Rayleigh, The Theory of Sound (Dover, New York, 1945).
13.
J. E. White, Underground Sound: Application of Seismic Waves (Elsevier, Amsterdam, 1983).
14.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge U.P., Cambridge, 1967).
15.
P. M. Morse and K. U. Ingaard, Theoretical Acoustics, International Series in Pure and Applied Physics (McGraw-Hill, New York, 1968).
16.
C. W.
Horton
, Sr.
, “
Dispersion relationships in sediments and sea water
,”
J. Acoust. Soc. Am.
55
,
547
549
(
1974
).
17.
F. J.
McDonal
,
F. A.
Angona
,
R. L.
Mills
,
R. L.
Sengbush
,
R. G.
Van Nostrand
, and
J. E.
White
, “
Attenuation of shear and compressional waves in Pierre shale
,”
Geophysics
23
,
421
439
(
1958
).
18.
E. L.
Hamilton
, “
Compressional wave attenuation in marine sediments
,”
Geophysics
37
,
620
646
(
1972
).
19.
C. W.
Horton
, Sr.
, “
Comment on ‘
Kramers–Kronig relationship between ultrasonic attenuation and phase velocity’ [J. Acoust. Soc. Am. 69, 696–701 (1981)],”
J. Acoust. Soc. Am.
70
,
1182
(
1981
).
20.
M.
O’Donnell
,
E. T.
Jaynes
, and
J. G.
Miller
, “
Kramers–Kronig relationship between ultrasonic attenuation and phase velocity
,”
J. Acoust. Soc. Am.
69
,
696
701
(
1981
).
21.
D. J.
Wingham
, “
The dispersion of sound in sediment
,”
J. Acoust. Soc. Am.
78
,
1757
1760
(
1985
).
22.
E. L. Hamilton, “Geoacoustic models of the sea floor,” in Physics of Sound in Marine Sediments (Plenum, New York, 1974), pp. 181–221.
23.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1336
(
1980
).
24.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
25.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
26.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Phys.
33
,
1482
1498
(
1962
).
27.
R. D. Stoll, Sediment Acoustics, Lecture Notes on Earth Sciences (Springer-Verlag, Berlin, 1989).
28.
J. B.
Walsh
, “
Seismic wave attenuation in rock due to friction
,”
J. Geophys. Res.
71
,
2591
2599
(
1966
).
29.
W. P.
Mason
, “
Internal friction mechanism that produces an attenuation in the Earth’s crust proportional to frequency
,”
J. Geophys. Res.
74
,
4963
4966
(
1969
).
30.
M. D.
Verweij
, “
Modeling space-time domain acoustic wave fields in media with attenuation: The symbolic manipulation approach
,”
J. Acoust. Soc. Am.
97
,
831
843
(
1995
).
31.
M. D.
Verweij
, “
Transient acoustic wave modeling: Higher-order Wetnzel–Kramers–Brillouin–Jeffreys asymptotics and symbolic manipulation
,”
J. Acoust. Soc. Am.
92
,
2223
2238
(
1992
).
32.
A. T.
de Hoop
, “
Acoustic radiation from an impulsive point source in a continuously layered fluid—An analysis based on the Cagniard method
,”
J. Acoust. Soc. Am.
88
,
2376
2388
(
1990
).
33.
A. T. de Hoop, “Similarity analysis for the elastic wave motion in a dissipative solid under a global relaxation law,” in IUTAM Symposium—Nonlinear Waves in Solids, edited by J. L. Wegener and F. R. Norwood (American Society of Mechanical Engineers, Fairfield, NJ, 1995), p. 77–82.
34.
G. B.
Deane
, “
Internal friction and boundary conditions in lossy fluid sea beds
,”
J. Acoust. Soc. Am.
101
,
233
240
(
1997
).
35.
J. D. Achenbach, Wave Propagation in Elastic Solids, Applied Mathematics and Mechanics (North-Holland, Amsterdam, 1975).
36.
M. A.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
,
1254
1264
(
1962
).
37.
M. J. Buckingham, “Acoustic pulse propagation in dispersive media,” in New Perspectives on Problems in Classical and Quantum Physics (Gordon and Breach, New York, in press).
38.
K. W.
Winkler
, “
Frequency dependent ultrasonic properties of high-porosity sandstones
,”
J. Geophys. Res.
88
,
9493
9499
(
1983
).
39.
W. T.
Born
, “
The attenuation constant of earth materials
,”
Geophysics
6
,
132
148
(
1941
).
40.
A. B. Wood, A Textbook of Sound (Bell and Sons, London, 1964).
41.
J. C.
Molis
and
N. P.
Chotiros
, “
A measurement of grain bulk modulus of sands
,”
J. Acoust. Soc. Am.
91
,
2463
(
A
;1992).
42.
N. P.
Chotiros
, “
Biot model of sound propagation in water-saturated sand
,”
J. Acoust. Soc. Am.
97
,
199
214
(
1995
).
43.
E. L. Hamilton, “Prediction of deep-sea sediment properties: state-of-the-art,” in Deep-Sea Sediments: Physical and Mechanical Properties, Vol. 2, edited by A. L. Inderbitzen (Plenum, New York, 1974), pp. 1–43.
44.
E. L.
Hamilton
, “
Elastic properties of marine sediments
,”
J. Geophys. Res.
76
,
579
604
(
1971
).
45.
F. Gassmann, “Über die elastizität poröser medien,” Vierteljahrsscher. Naturforsch. Ges. Zürich, 96, 1–23 (1951).
46.
F. Gassmann, “Elastic waves through a packing of spheres,” Geophysics 16, 673–685 (),
and 18, 269 (1951).
47.
E. L.
Hamilton
, “
Sound velocity and related properties of marine sediments, North Pacific
,”
J. Geophys. Res.
75
,
4423
4446
(
1970
).
48.
P. C. Gasson, Geometry of Spatial Forms (Horwood, Chichester, 1983).
49.
O. K.
Rice
, “
On the statistical mechanics of liquids, and the gas of hard elastic spheres
,”
J. Chem. Phys.
12
,
1
18
(
1944
).
50.
M. D. Richardson and K. B. Briggs, “In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering,” Geo-Marine Lett. 16, 196–203 (1996).
51.
M. D. Richardson, personal communication (1997).
52.
S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).
53.
M. D. Richardson, “Spatial variability of surficial shallow water sediment,” in Ocean-Seismo Acoustics, edited by T. Akal and J. M. Berkson (Plenum, New York, 1986), pp. 527–536.
54.
M. D. Richardson and K. B. Briggs, “On the use of acoustic impedance values to determine sediment properties,” in Proc. Inst. Acoust. 15, Pt. 2, 15–24 (1993).
This content is only available via PDF.
You do not currently have access to this content.