The sound radiation of 3-MHz acoustically driven air bubbles in liquid is analyzed with respect to possible applications in second harmonic ultrasound diagnostics devices, which have recently come into clinical use. In the forcing pressure amplitude Pa=1–10 atm and ambient radius R0=0.5–5 μm parameter domain, a narrow regime around the resonance radius R0∼1–1.5 μm and relatively modest Pa∼2–2.5 atm is identified in which optimal sound yield in the second harmonic is achieved while maintaining spherical stability of the bubble. For smaller Pa and larger R0 hardly any sound is radiated; for larger Pa bubbles become unstable toward nonspherical shape oscillations of their surface. The computation of these instabilities is essential for the evaluation of the optimal parameter regime. A region of slightly smaller R0 and Pa∼1–3 atm is best suited to achieve large ratios of the second harmonic to the fundamental intensity. Spherical stability is guaranteed in the suggested regimes for liquids with an enhanced viscosity compared to water, such as blood.

1.
R.
Gramiak
and
P. M.
Shah
,
Invest. Radiol.
3
,
356
(
1968
).
2.
R. Y.
Nishi
,
Acustica
33
,
65
(
1975
).
3.
See the articles in Advances in Echo Imaging Using Contrast Enhancement, edited by N. C. Nanda and R. Schlief (Kluwer Academic, Dordrecht, 1993).
4.
C. M.
Sehgal
and
J. F.
Greenleaf
,
J. Acoust. Soc. Am.
72
,
1711
(
1982
).
5.
H. A. H.
Jongen
,
J. M.
Thijssen
,
M.
van den Aarssen
, and
W. A.
Verhoef
,
J. Acoust. Soc. Am.
79
,
535
(
1986
).
6.
B. A.
Schrope
and
V. L.
Newhouse
,
Ultrasound Med. Biol.
19
,
567
(
1993
).
7.
P. N. Burns, Clin. Radiol. Suppl. 51, 50 (1996).
8.
B.
Ward
,
A. C.
Baker
, and
V. F.
Humphrey
,
J. Acoust. Soc. Am.
101
,
143
(
1997
).
9.
D. F.
Gaitan
,
L. A.
Crum
,
R. A.
Roy
, and
C. C.
Church
,
J. Acoust. Soc. Am.
91
,
3166
(
1992
).
10.
B. P.
Barber
and
S. J.
Putterman
,
Nature (London)
352
,
318
(
1991
).
11.
R.
Hiller
,
K.
Weninger
,
S. J.
Putterman
, and
B. P.
Barber
,
Science
266
,
248
(
1994
).
12.
For reviews, see
L. A.
Crum
,
Phys. Today
47
,
22
(
1994
);
S. J.
Putterman
,
Sci. Am.
272
,
32
(
1995
);
D. Lohse, Phys. Blätt, 51, 1087 (1995).
13.
M. P.
Brenner
,
D.
Lohse
, and
T. F.
Dupont
,
Phys. Rev. Lett.
75
,
954
(
1995
).
14.
M. P.
Brenner
,
D.
Lohse
,
D.
Oxtoby
, and
T. F.
Dupont
,
Phys. Rev. Lett.
76
,
1158
(
1996
).
15.
S.
Hilgenfeldt
,
D.
Lohse
, and
M. P.
Brenner
,
Phys. Fluids
8
,
2808
(
1996
).
16.
D.
Lohse
,
M.
Brenner
,
T.
Dupont
,
S.
Hilgenfeldt
, and
B.
Johnston
,
Phys. Rev. Lett.
78
,
1359
(
1997
);
M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Why air bubbles in water glow so easily,” in Nonlinear Physics of Complex Systems—Current Status and Future Trends, edited by J. Parisi, S. C. Müller, and W. Zimmermann, Lecture Notes in Physics (Springer-Verlag, Berlin, 1996), p. 79.
17.
M. P.
Brenner
,
S.
Hilgenfeldt
,
D.
Lohse
, and
R.
Rosales
,
Phys. Rev. Lett.
77
,
3467
(
1996
).
18.
S. Hilgenfeldt, M. P. Brenner, S. Grossmann, and D. Lohse, “Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles,” J. Fluid Mech. (submitted).
19.
C. C.
Church
,
J. Acoust. Soc. Am.
86
,
215
(
1989
).
20.
C. E. Brennen, Cavitation and Bubble Dynamics (Oxford U. P., Oxford, 1995).
21.
N.
deJong
,
F. Ten
Cate
,
C. T.
Lancee
,
T. C.
Roelandt
, and
N.
Bom
,
Ultrasonics
29
,
324
(
1991
).
22.
N.
deJong
,
L.
Hoff
,
T.
Skotland
, and
N.
Bom
,
Ultrasonics
30
,
95
(
1992
).
23.
C. C.
Church
,
J. Acoust. Soc. Am.
97
,
1510
(
1995
).
24.
Z.
Ye
,
J. Acoust. Soc. Am.
100
,
2011
(
1996
).
25.
Lord
Rayleigh
,
Philos. Mag.
34
,
94
(
1917
);
M.
Plesset
,
J. Appl. Mech.
16
,
277
(
1949
);
W.
Lauterborn
,
J. Acoust. Soc. Am.
59
,
283
(
1976
).
26.
R.
Löfstedt
,
B. P.
Barber
, and
S. J.
Putterman
,
Phys. Fluids A
5
,
2911
(
1993
).
27.
M.
Plesset
and
A.
Prosperetti
,
Annu. Rev. Fluid Mech.
9
,
145
(
1977
).
28.
B. P.
Barber
and
S. J.
Putterman
,
Phys. Rev. Lett.
69
,
3839
(
1992
).
29.
R.
Löfstedt
,
K.
Weninger
,
S. J.
Putterman
, and
B. P.
Barber
,
Phys. Rev. E
51
,
4400
(
1995
).
30.
M.
Plesset
,
J. Appl. Mech.
16
,
277
(
1949
).
31.
J. B.
Keller
and
M. J.
Miksis
,
J. Acoust. Soc. Am.
68
,
628
(
1980
).
32.
H. G.
Flynn
,
J. Acoust. Soc. Am.
58
,
1160
(
1975
).
33.
F. R. Gilmore, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, Report 26-4 (1952).
34.
G. J.
Lastman
and
R. A.
Wentzell
,
J. Acoust. Soc. Am.
69
,
638
(
1981
);
G. J.
Lastman
and
R. A.
Wentzell
,
J. Acoust. Soc. Am.
71
,
835
(
1982
).
35.
L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1960).
36.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge U. P., London, 1992).
37.
W.
Lauterborn
and
U.
Parlitz
,
J. Acoust. Soc. Am.
84
,
1975
(
1988
).
38.
H. G.
Flynn
and
C. C.
Church
,
J. Acoust. Soc. Am.
84
,
985
(
1988
).
39.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).
40.
A.
Prosperetti
,
Q. Appl. Math.
34
,
339
(
1977
), see also Ref. 20 and
H. W.
Strube
,
Acustica
25
,
289
(
1971
);
M.
Plesset
,
J. Appl. Phys.
25
,
96
(
1954
);
G.
Birkhoff
,
Q. Appl. Math.
12
,
306
(
1954
);
A.
Eller
and
L. A.
Crum
,
J. Acoust. Soc. Am. Suppl. 1
47
,
762
(
1970
).
41.
H. Landolt and R. Börnstein, Zahlenwerte und Funktionen aus Physik and Chemie (Springer-Verlag, Berlin, 1969).
This content is only available via PDF.
You do not currently have access to this content.