A time-domain modeling of xylophone bars excited by the blow of a mallet is presented. The flexural vibrations of the bar, with nonuniform cross section, are modeled by a one-dimensional Euler–Bernoulli equation, modified by the addition of two damping terms for the modeling of losses and a restoring force for the modeling of the stiffness of the suspending cord. The action of the mallet against the bar is described by Hertz’s law of contact for linear elastic bodies. This action appears as a force density term on the right-hand side of the bending wave equation. The model is completed by the equation of motion for the mallet, and by free–free boundary conditions for the bar. The bending wave equation of the bar is put into a numerical form by means of an implicit finite-difference scheme, which ensures a sufficient spatial resolution for an accurate tuning of the bar. The geometrical, elastic, and damping parameters of the model are derived from experiments carried out on actual xylophones and mallets. The validity of the numerical model is confirmed by three different procedures: First, a comparison is made between numerical results and analytical solutions. The second series of tests consist of examining the effects of the number of spatial steps on the convergence of the solution. Finally, various comparisons are made between measured and simulated impact forces and bar accelerations. The present model reproduces adequately the main features of a real instrument. The most significant physical parameters of bars, mallets and players’ actions can be controlled independently for producing a remarkable variety of tones.

1.
D. Holz, “Investigations on acoustically important qualities of xylophone-bar materials: Can we substitute any tropical woods by European species?,” in Proceedings of the International Symposium on Musical Acoustics (Jouve, Paris, 1995), pp. 351–357.
2.
J. L. Moore, “Acoustics of bar percussion instruments” Ph.D. thesis, Ohio State University, Columbus, Ohio, 1970.
3.
T. D.
Rossing
, “
Acoustics of percussion instruments: Part I
,”
Phys. Teach.
14
,
546
556
(
1976
).
4.
N. H. Fletcher and T. D. Rossing, Physics of Musical Instruments (Springer–Verlag, New York, 1991).
5.
I. Bork, “Zur Abstimmung und Kopplung von schwingenden Stäben und Hohlraumresonatoren,” Ph.D. thesis, Dissertation, Technischen Universität Carolo-Wilhelmina, Braunschweig, 1983.
6.
I. Bork, “Practical tuning of xylophone bars and resonators,” Appl. Acoust. 46, 103–127 (1995).
7.
I. Bork, “Measuring the acoustical properties of mallets,” Appl. Acoust. 30, 207–218 (1990).
8.
F.
Orduña-Bustamente
, “
Nonuniform beams with harmonically related overtones for use in percussion instruments
,”
J. Acoust. Soc. Am.
90
,
2935
2941
(
1991
);
F.
Orduña-Bustamente
, Erratum:
J. Acoust. Soc. Am.
91
,
3582
3583
(
1992
).
9.
K. F. Graff, Wave Motion in Elastic Solids (Dover, New York, 1991).
10.
E. H.
Lee
, “
The impact of a mass striking a beam
,”
Trans. ASME J. Appl. Mech.
62
,
A
129
(
1940
).
11.
A. C.
Eringen
, “
Transverse impact on beams and plates
,”
Trans. ASME J. Appl. Mech.
,
461
468
(
1953
).
12.
H. Hertz, “Über die Berührung fester elasticher Körper,” J. Math. 92, 156 (1881).
13.
M. V.
Gridnev
, “
Impulsive excitation of the resonance boxes of plucked stringed instruments
,”
Sov. Phys. Acoust.
20
,
431
434
(
1975
).
14.
G.
Weinreich
, “
Violin sound synthesis from first principles
,”
J. Acoust. Soc. Am. Suppl. 1
74
,
S52
(
1983
).
15.
G.
Weinreich
, “
Synthesis of piano tones from first principles
,”
J. Acoust. Soc. Am. Suppl. 1
69
,
S88
(
1981
).
16.
A.
Chaigne
and
A.
Askenfelt
, “
Numerical simulations of piano strings. Part I. A physical model for struck string using finite difference methods
,”
J. Acoust. Soc. Am.
2
,
1112
1118
(
1994
).
17.
S. H.
Crandall
, “
Numerical treatment of a fourth order parabolic partial differential equation
,”
J. Assoc. Comput. Mach.
1
,
111
118
(
1954
).
18.
L.
Collatz
, “
Zur Stabilität des Differenzenverfahrens bei der Stabschwingungsgleichnung
,”
Z. Angew. Math. Mech.
31
,
392
393
(
1951
).
19.
V. Doutaut, “Etude expérimentale et simulation numérique d’instruments de percussion à clavier,” Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications, Paris, 1996.
20.
T. D.
Rossing
and
D.
Russell
, “
Laboratory observation of elastic waves in solids
,”
J. Acoust. Soc. Am.
58
,
1153
1162
(
1990
).
21.
V. Bucur, Acoustics of Wood (CRC, Boca Raton, FL, 1995).
22.
R. M. Christensen, Theory of Viscoelasticity (Academic, New York, 1982), 2nd ed.
23.
L. Landau and E. Lifchitz, Théorie de l’élasticité (Physique théorique, Mir, Paris, 1967).
24.
D. A. Russel and T. D. Rossing, “Testing the nonlinear character of piano hammers using shock spectra,” J. Acoust. Soc. Am. (submitted).
25.
T.
Yanagisawa
and
K.
Nakamura
,
“Dynamic compression characteristics of piano felt,”
J. Acoust. Soc. Jpn.
40
,
725
729
(
1984
) (in Japanese).
26.
W. F. Ames, Numerical Methods for Partial Differential Equations (Academic, London, 1992), 3rd ed.
27.
G. Cohen (Editor), “Méthodes numériques d’ordre élevé pour les ondes en régime transitoire,” Collection Didactique, Ecole INRIA des ondes, INRIA Ed., Le Chesnay, 1994.
28.
R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (Interscience, New York, 1967), 1st ed.
29.
A. Chaigne, “On the use of finite differences for musical synthesis. Application to plucked stringed instruments,” J. Acoust. 5, 181–211 (1992).
30.
F. Orduña-Bustamante and A. Quintanar Isaias, “A preliminary determination of the mechanical properties of four species of tropical wood from Mexico,” J. Sound Vib. 154, 365–368 (1992).
31.
J.
Laroche
, “
The use of the matrix pencil method for the spectrum analysis of musical signals
,”
J. Acoust. Soc. Am.
4
,
1958
1965
(
1994
).
32.
I. Bork and J. Meyer, “Zur klanglichen Bewertung von Xylophonen,” Das Musikinstrument 31, 1076–1081 (1982).
This content is only available via PDF.
You do not currently have access to this content.