In classical ray tracing, eigenrays between a source and receiver are determined by an initial value or “shooting” approach. The launch angles of rays from a source point are varied until the rays intersect the receiver endpoint. In nonseparable range-dependent environments, the ray paths can be chaotic, putting a fundamental limit on tracing rays by shooting methods. In the present paper, an alternative approach based on Fermat’s principle of minimum propagation time is discussed. Rather than minimizing the travel time integral indirectly, by deriving the Euler–Lagrange equations for the ray paths, so-called “direct methods” of minimization, taken from the calculus of variations, are employed. Previous authors have demonstrated that simulated annealing, a direct method, can be used to find eigenrays in a particularly chaotic ray tracing problem. In the present paper, two direct methods are applied to the calculation of eigenrays in continuous media: the Rayleigh–Ritz technique, a classical direct method, and simulated annealing, a Monte Carlo direct method. Direct methods are compared to shooting techniques, and some of the advantages and drawbacks of both methods are shown using both nonchaotic and chaotic examples.

1.
D. R.
Palmer
,
M. G.
Brown
,
F. D.
Tappert
, and
H. F.
Bezdek
, “
Classical chaos in nonseparable wave propagation problems
,”
Geophys. Res. Lett.
15
,
569
572
(
1988
).
2.
K. B.
Smith
,
M. G.
Brown
, and
F. D.
Tappert
, “
Ray chaos in underwater acoustics
,”
J. Acoust. Soc. Am.
91
,
1939
1949
(
1992
).
3.
M. G. Brown, F. D. Tappert, G. J. Goñi, and K. B. Smith, “Chaos in underwater acoustics,” in Ocean Variability and Acoustic Propagation, edited by J. Potter and A. Warner-Varnas (Kluwer Academic, Dordrecht, 1991), pp. 139–160.
4.
F. D.
Tappert
and
X.
Tang
, “
Ray chaos and eigenrays
,”
J. Acoust. Soc. Am.
99
,
185
195
(
1996
).
5.
W. A.
Kuperman
and
M. D.
Collins
, “
Finding eigenrays by optimization with application to tomography and overcoming chaos
,”
J. Acoust. Soc. Am.
93
,
2425
(A) (
1993
).
6.
M. D.
Collins
and
W. A.
Kuperman
, “
Overcoming ray chaos
,”
J. Acoust. Soc. Am.
95
,
3167
3170
(
1994
).
7.
M. A.
Mazur
and
K. E.
Gilbert
, “
Finding eigenrays in environments prone to numerical instability by directly optimizing the travel time integral
,”
J. Acoust. Soc. Am.
96
,
3354
(A) (
1994
).
8.
R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, New York, 1953), Vol. I, Chap. 4, pp. 164–274.
9.
I. M. Gelfand and S. V. Fomin, Calculus of Variations (Prentice-Hall, Englewood Cliffs, NJ, 1963), pp. 195–197.
10.
S.
Kirkpatrick
,
C. D.
Gellatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
680
(
1983
).
11.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equations of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1091
(
1953
).
12.
L. Davis and M. Steenstrup, “Genetic Algorithms and Simulated Annealing: An Overview,” in Genetic Algorithms and Simulated Annealing, edited by L. Davis (Morgan Kauffmann, San Mateo, CA, 1987), Chap. 1, pp. 1–11.
13.
M. A.
Mazur
and
K. E.
Gilbert
, “
Direct optimization methods, ray propagation and chaos: II. Propagation with discrete transitions
,”
J. Acoust. Soc. Am.
101
,
184
192
(
1997
).
14.
B. R. Julian and D. Gubbins, “Three-dimensional seismic ray tracing,” J. Geophys. 43, 95–113 (1977).
15.
D.
Cvijović
and
J.
Klinowski
, “
Taboo search: An approach to the multiple minima problem
,”
Science
267
,
664
666
(
1995
).
16.
T. L.
Foreman
, “
An exact ray theoretical formulation of the Helmholtz equation
,”
J. Acoust. Soc. Am.
86
,
234
246
(
1989
).
17.
A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Acoustical Society of America, New York, 1989), pp. 376–378.
18.
E. Ott, Chaos in Dynamical Systems (Cambridge U.P., Cambridge, MA, 1993), p. 18.
19.
S. M. Hammel, J. A. Yorke, and C. Grebogi, “Do numerical orbits of chaotic dynamical processes represent true orbits?” J. Complexity 3, 136–145 (1987).
This content is only available via PDF.
You do not currently have access to this content.