Measurements using a fiber-optic probe hydrophone, high-speed camera, and B-mode ultrasound showed attenuation of the trailing negative-pressure phase of a lithotripter shock pulse under conditions that favor generation of cavitation bubbles, such as in water with a high content of dissolved gas or at high pulse repetition rate where more cavitation nuclei persisted between pulses. This cavitation-mediated attenuation of the acoustic pulse was also observed to increase with increasing amplitude of source discharge potential, such that the negative-pressure phase of the pulse can remain fixed in amplitude even with increasing source discharge potential.
REFERENCES
1.
Y. A.
Pishchalnikov
, O. A.
Sapozhnikov
, M. R.
Bailey
, J. C.
Williams
, Jr., R. O.
Cleveland
, T.
Colonius
, L. A.
Crum
, A. P.
Evan
, and J. A.
McAteer
, “Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves
,” J. Endourol
17
(7), 435
–446
(2003
).2.
M.
Liebler
, T.
Dreyer
, and R.E.
Riedlinger
, “Focal Pressure Variations in Shock Wave Therapies Caused by Cavitation Bubbles,” Proc. of the Joint Congress CFA/DAGA’4, 983
–984
(2004
);http://www.ihe.uni-karlsruhe.de/forschung/akustik/Paper_Liebler_DAGA04.pdf
3.
G. N.
Sankin
, “Luminescence induced by spherically focused acoustic pulses in liquids
,” Acoust. Phys.
51
, 338
–346
(2005
).4.
M. R.
Bailey
, Y. A.
Pishchalnikov
, O. A.
Sapozhnikov
, R. O.
Cleveland
, J. A.
McAteer
, N. A.
Miller
, I. V.
Pishchalnikova
, B. A.
Connors
, L. A.
Crum
, and A. P.
Evan
, “Cavitation detection during shock wave lithotripsy
,” Ultrasound Med. Biol.
31
(9), 1245
–1256
(2005
).5.
O. A.
Sapozhnikov
, V. A.
Khokhlova
, M. R.
Bailey
, J. C.
Williams
, Jr., J. A.
McAteer
, R. O.
Cleveland
, and L. A.
Crum
, “Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy
,” J. Acoust. Soc. Am.
112
(3), 1183
–1195
(2002
).6.
R. O.
Cleveland
, M. R.
Bailey
, N.
Fineberg
, B.
Hartenbaum
, M.
Lokhandwalla
, J. A.
McAteer
, and B.
Sturtevant
, “Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3
,” Rev. Sci. Instrum.
71
, 2514
–2525
(2000
).7.
A. R.
Kaiser
, C. A.
Cain
, E. Y.
Hwang
, J. B.
Fowlkes
, and R. J.
Jeffers
, “A cost effective degassing system for use in ultrasonic measurements: The multiple pinhole degassing system
,” J. Acoust. Soc. Am.
99
(6), 3857
–3859
(1996
).8.
J.
Stardenraus
and W.
Eisenmenger
, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water
,” Ultrasonics
31
, 267
–273
(1993
).9.
W.
Eisenmenger
, “Electromagnetic generation of plane pressure pulses in liquids
,” (In English) and “Electromagnetische erzeugung von ebenen druckstossen in flussigkeiten
,” (In German), Acustica
12
, 185
–201
(1962
).10.
P.
Zhong
, Y. F.
Zhou
, and S. L.
Zhu
, “Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL
,” Ultrasound Med. Biol.
27
(1
), 119
–134
(2001
).11.
M.
Arora
, L.
Junge
, and C. D.
Ohl
, “Cavitation cluster dynamics in shock-wave lithotripsy. I. Free field
,” Ultrasound Med. Biol.
31
, 827
–839
(2005
).© 2005 Acoustical Society of America.
2005
Acoustical Society of America