Measurements using a fiber-optic probe hydrophone, high-speed camera, and B-mode ultrasound showed attenuation of the trailing negative-pressure phase of a lithotripter shock pulse under conditions that favor generation of cavitation bubbles, such as in water with a high content of dissolved gas or at high pulse repetition rate where more cavitation nuclei persisted between pulses. This cavitation-mediated attenuation of the acoustic pulse was also observed to increase with increasing amplitude of source discharge potential, such that the negative-pressure phase of the pulse can remain fixed in amplitude even with increasing source discharge potential.

1.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
M. R.
Bailey
,
J. C.
Williams
, Jr.
,
R. O.
Cleveland
,
T.
Colonius
,
L. A.
Crum
,
A. P.
Evan
, and
J. A.
McAteer
, “
Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves
,”
J. Endourol
17
(7),
435
446
(
2003
).
2.
M.
Liebler
,
T.
Dreyer
, and
R.E.
Riedlinger
, “Focal Pressure Variations in Shock Wave Therapies Caused by Cavitation Bubbles,” Proc. of the Joint Congress CFA/DAGA’4,
983
984
(
2004
);
http://www.ihe.uni-karlsruhe.de/forschung/akustik/Paper_Liebler_DAGA04.pdf
3.
G. N.
Sankin
, “
Luminescence induced by spherically focused acoustic pulses in liquids
,”
Acoust. Phys.
51
,
338
346
(
2005
).
4.
M. R.
Bailey
,
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
R. O.
Cleveland
,
J. A.
McAteer
,
N. A.
Miller
,
I. V.
Pishchalnikova
,
B. A.
Connors
,
L. A.
Crum
, and
A. P.
Evan
, “
Cavitation detection during shock wave lithotripsy
,”
Ultrasound Med. Biol.
31
(9),
1245
1256
(
2005
).
5.
O. A.
Sapozhnikov
,
V. A.
Khokhlova
,
M. R.
Bailey
,
J. C.
Williams
, Jr.
,
J. A.
McAteer
,
R. O.
Cleveland
, and
L. A.
Crum
, “
Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy
,”
J. Acoust. Soc. Am.
112
(3),
1183
1195
(
2002
).
6.
R. O.
Cleveland
,
M. R.
Bailey
,
N.
Fineberg
,
B.
Hartenbaum
,
M.
Lokhandwalla
,
J. A.
McAteer
, and
B.
Sturtevant
, “
Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3
,”
Rev. Sci. Instrum.
71
,
2514
2525
(
2000
).
7.
A. R.
Kaiser
,
C. A.
Cain
,
E. Y.
Hwang
,
J. B.
Fowlkes
, and
R. J.
Jeffers
, “
A cost effective degassing system for use in ultrasonic measurements: The multiple pinhole degassing system
,”
J. Acoust. Soc. Am.
99
(6),
3857
3859
(
1996
).
8.
J.
Stardenraus
and
W.
Eisenmenger
, “
Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water
,”
Ultrasonics
31
,
267
273
(
1993
).
9.
W.
Eisenmenger
, “
Electromagnetic generation of plane pressure pulses in liquids
,” (In English) and “
Electromagnetische erzeugung von ebenen druckstossen in flussigkeiten
,” (In German),
Acustica
12
,
185
201
(
1962
).
10.
P.
Zhong
,
Y. F.
Zhou
, and
S. L.
Zhu
, “
Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL
,”
Ultrasound Med. Biol.
27
(
1
),
119
134
(
2001
).
11.
M.
Arora
,
L.
Junge
, and
C. D.
Ohl
, “
Cavitation cluster dynamics in shock-wave lithotripsy. I. Free field
,”
Ultrasound Med. Biol.
31
,
827
839
(
2005
).

Supplementary Material