A small thermoacoustic-Stirling engine demonstration device that can produce sound in excess of 100 dB at 560 Hz has been constructed. The engine consists of a quarter wavelength acoustic resonator with a smaller diameter coaxial regenerator positioned toward the resonator’s closed end, thereby forming an acoustic feedback path around the regenerator. Acoustic oscillations begin spontaneously when the hot heat exchanger adjoining one end of the regenerator is heated to a sufficient temperature. A water stream in a second heat exchanger maintains the opposite end of the regenerator near ambient temperature. This device was inspired by the Backhaus-Swift engine and is a preliminary step in the investigation of regenerator operation at frequencies much higher than may be practical with mechanical or free-piston Stirling engines.

1.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic-Stirling heat engine: Detailed study
,”
J. Acoust. Soc. Am.
107
,
3148
3166
(
2000
).
2.
G. W.
Swift
,
D. L.
Gardner
, and
S.
Backhaus
, “
Acoustic recovery of lost power in pulse tube refrigerators
,”
J. Acoust. Soc. Am.
105
,
711
724
(
1999
).
3.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic Stirling heat engine
,”
Nature (London)
399
,
335
338
(
1999
).
4.
C. M. DeBlok, “Thermo-acoustic system,” International Patent No. WO-99-20957 (1999).
5.
M. E.
Poese
and
S. L.
Garrett
, “
Thermoacoustic-Stirling model refrigerator
,”
J. Acoust. Soc. Am.
109
,
2404
(
2001
).
6.
S. L.
Garrett
and
R.
Chen
, “
Thermoacoustic demonstration
,”
Echoes
10
,
4
5
(
2000
).
7.
N. Lane, D. Berchowitz, D. Shade, and A. Karandikar, “Development of a high frequency Stirling engine-powered 3 kW(e) generator set,” in Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, edited by W. D. Jackson (IEEE, New York, NY, 1989), Vol. 5, pp. 2213–2218.
8.
G. W.
Swift
, “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
(
1988
).
9.
J. T.
Wheatley
,
T.
Hoffler
,
G. W.
Swift
, and
A.
Migliori
, “
The natural heat engine
,”
Los Alamos Sci.
14
,
1
33
(
1986
).
10.
P.
Ceperley
, “
A pistonless Stirling engine—the traveling wave heat engine
,”
J. Acoust. Soc. Am.
66
,
1508
1513
(
1979
).
11.
Celcor catalytic converter, HP-CB-03-1, 400 cells/in2, Corning Inc., Corning, NY 14831.
12.
W. C.
Ward
and
G. W.
Swift
, “
Design environment for low amplitude thermoacoustic engines (DeltaE)
,”
J. Acoust. Soc. Am.
95
,
3671
3672
(
1994
).
13.
Endevco Model 8510C-15 Pressure sensor, Endevco Corporation, 30700 Rancho Viejo Road, San Juan Capistrano, CA 92675.
14.
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (John Wiley and Sons, New York, NY, 1982).
15.
D. Gedeon, “DC gas flows in Stirling and pulse tube cryocoolers,” in Cryocoolers 9, edited by R. G. Ross (Plenum Press, New York, 1997), pp. 385–392.
This content is only available via PDF.