Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90 which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

Monochromatic x-ray microscopy using bent crystals has provided tremendous insights into the dynamics of High Energy Density Physics (HEDP) experiments, such as wire-array or liner implosions using pulsed-power devices,1–7 hot-electron transport in short-pulse laser plasma interactions,8–15 or capsule implosions using high-energy lasers.16–21 

In combination with the spectral-line sources from highly charged ions (e.g., the Heα resonance or intercombination line) or from cold material (e.g., the Kα doublet), these microscopes are efficient and provide a high spatial resolution.22–24 The crystal substrates and the Miller indices (hkl) of the Bragg plane have to be matched such that the lattice spacing d, the spectral line energy E = hc/λ with hc ≈ 12.398  keVÅ, and the reflection order m fulfill the Bragg equation

(1)

The Bragg angle ϑ should be close to 90° to reduce astigmatism.22 

Toroidal crystals provide a high spatial resolution for a larger range of Bragg angles.25,26 However, as the Bragg angle decreases, additional aberrations become apparent, and the point spread function becomes sensitive to whether or not the crystal surface is a mathematical toroid or a mathematical ellipsoid. Furthermore, toroidal crystals have higher manufacturing costs and their alignment is more demanding.

Other imaging concepts using spherical crystals that are also not restricted to near-normal incidence have been developed,27–31 but these concepts require a point-like source which cannot always be generated.

The limitation to fulfill the Bragg condition at near-normal incidence seemingly limits the available choices of crystals and spectral lines. Furthermore, a spherical-crystal microscope requires that the crystal can be bent into a spherical shape with a high optical quality to obtain high-resolution images, which means that only perfect crystals such as α-quartz, mica, Ge, GaAs, or Si are suitable crystal materials, whereas, for example, mosaic crystals such as LiF or HOPG cannot be used.

Bent-crystal x-ray microscopes for the diagnostics of plasmas were first suggested in the 1970s;42 a literature survey reveals that since then only a few suitable matches of crystal and line combinations have been realized in applications. Table I shows some of the results. Many systems were developed for x-ray energies below 2 keV. The reason for this might be that low-Miller-index crystals such as quartz (1 0 0) or (1 0 1) were the only high-quality and high-efficiency reflectors at that time, which could be produced having a decimeter-scale radius of curvature. On the positive side, sub-2-keV backlighter systems are important for fusion research with cryogenic deuterium-tritium (DT) implosions; the low opacity of the DT shell requires a low photon energy to obtain sufficient contrast in the image.19 

TABLE I.

Some published near-normal incidence spectral-line and spherical-crystal microscope combinations that have been used experimentally. The table is sorted by x-ray energy from top to bottom. For some crystals the Miller indices represent higher-order reflections; for these higher-order reflections the 2d value shown is the effective lattice spacing (2d/m). Note that we omit the conjugate plane in the designation of the Miller indices for quartz crystals (e.g., quartz (224̄3) becomes quartz (2 2 3)) for consistency with the other crystals.

SpectralEnergyCrystalMiller indices2dϑ
line(keV)materialhkl[Å][°]Reference
Al Heβ 1.468 Quartz 1 0 0 8.510 82.85 Ref. 32  
Mg Lyα 1.473 Quartz 1 0 0 8.510 81.53 Ref. 16  
Al Kα 1.487 Quartz 1 0 0 8.510 78.39 Ref. 16  
Dy 1.494 Quartz 1 0 0 8.510 77.21 Ref. 33  
Si Heα 1.865 Quartz 1 0 1 6.687 83.80 Refs. 5, 19, 23, and 34  
Al H, He-like 1.927 Mica 0 0 6 6.647 75.25 Ref. 35  
Ar Kα 2.956 Quartz 2 0 0 4.255 80.00 Ref. 36  
Ar Heα 3.124 Ge 2 2 0 4.000 82.83 Ref. 37  
Ar Heα 3.140 Quartz 2 0 1 3.959 85.80 Ref. 36  
Ti Kα 4.505 Quartz 2 0 3 2.749 88.90 Ref. 8  
Sc Lyα 4.542 Quartz 2 0 3 2.749 83.21 Ref. 8  
Mn Heα 6.151 Quartz 2 2 3 2.030 83.19 Refs. 23 and 38  
Ni Heα 7.806 Quartz 5 0 2 1.624 77.97 Ref. 39  
Cu Kα 8.048 Quartz 4 2 2 1.541 88.70 Ref. 8  
Ta Lα 8.141 Mica 0 0 26 1.534 83.17 Ref. 35  
Zr Kα2 15.691 Quartz 2 3 4 0.791 86.98 Refs. 15 and 40  
Zr Kα1 15.775 Quartz 9 3 0 0.787 87.34 Ref. 22  
Ru Heα 19.717 Ge 15 7 7 0.630 87.15 Ref. 41  
SpectralEnergyCrystalMiller indices2dϑ
line(keV)materialhkl[Å][°]Reference
Al Heβ 1.468 Quartz 1 0 0 8.510 82.85 Ref. 32  
Mg Lyα 1.473 Quartz 1 0 0 8.510 81.53 Ref. 16  
Al Kα 1.487 Quartz 1 0 0 8.510 78.39 Ref. 16  
Dy 1.494 Quartz 1 0 0 8.510 77.21 Ref. 33  
Si Heα 1.865 Quartz 1 0 1 6.687 83.80 Refs. 5, 19, 23, and 34  
Al H, He-like 1.927 Mica 0 0 6 6.647 75.25 Ref. 35  
Ar Kα 2.956 Quartz 2 0 0 4.255 80.00 Ref. 36  
Ar Heα 3.124 Ge 2 2 0 4.000 82.83 Ref. 37  
Ar Heα 3.140 Quartz 2 0 1 3.959 85.80 Ref. 36  
Ti Kα 4.505 Quartz 2 0 3 2.749 88.90 Ref. 8  
Sc Lyα 4.542 Quartz 2 0 3 2.749 83.21 Ref. 8  
Mn Heα 6.151 Quartz 2 2 3 2.030 83.19 Refs. 23 and 38  
Ni Heα 7.806 Quartz 5 0 2 1.624 77.97 Ref. 39  
Cu Kα 8.048 Quartz 4 2 2 1.541 88.70 Ref. 8  
Ta Lα 8.141 Mica 0 0 26 1.534 83.17 Ref. 35  
Zr Kα2 15.691 Quartz 2 3 4 0.791 86.98 Refs. 15 and 40  
Zr Kα1 15.775 Quartz 9 3 0 0.787 87.34 Ref. 22  
Ru Heα 19.717 Ge 15 7 7 0.630 87.15 Ref. 41  

Looking at Table I and the literature suggests that spherical-crystal imaging is restricted to these few chance matches between spectral lines and crystals. Finding other combinations relies on finding the correct combination of Miller indices resulting in a suitable d-spacing and Bragg angle for a spectral line. An earlier work by Koch43 describes a systematic study for matching combinations using selected quartz, LiF, Si, or Ge Miller-index combinations and a few exotic crystals such as single-crystal aluminum or tungsten, gypsum, etc. However, “no attempt was made to rank the crystals in terms of suitability for high-resolution imaging (mechanical properties, integrated reflectivity, mosaic vs. perfect crystal, etc.); the purpose of the compilation is to explore which crystal might be valuable for such further study.” Some selected results of this work were published in Table 2 in Ref. 22.

Loupias et al.31 identified about 40 matching pairs for x-ray energies between 1 and 16 keV for quartz and mica crystals. Similar to the work by Koch it was not further examined whether or not the found reflection orders have sufficient integrated reflectivity to be suitable for imaging.

In this work, after performing a systematic, automated search over all 9.1 × 106 possible combinations for six selected crystals with arbitrary Miller-index combinations (hkl) = ([0, …, 20], [0, …, 20], [0, …, 20]), for x-ray energies between 1 and 26 keV (Z = 1–50, Ne to Sn; evaluating the Heα resonance, intercombination or Kα1,2 lines), we show that a matching, efficient crystal and spectral-line pair can be found for basically any of these sources.

In Sections IIIV, we first identify the constraints for spherical-crystal imagers as microscopes for HEDP experiments. Then a method is presented to find all possible spectral-line, crystal, and Miller-index combinations and rank them with respect to their suitability for high-resolution x-ray microscopy experiments. The results are given in a tabulated format at the end of this article.

X-ray imaging properties of spherical crystals for HEDP applications were already covered in Refs. 22–24, here we only describe a few basic principles of their operation. One type of x-ray microscope is a backlighter system, where the object is radiographed by the x-rays from another source, for example, a laser-generated plasma. The other commonly used configuration utilizes x-rays emitted by the object itself for the imaging and is hence called a self-emission imaging system. Both the systems obey similar imaging principles and their imaging properties are detailed in the cited references.

Fig. 1 shows a generic x-ray backlighter system with a spherically curved crystal. Image formation by this spherical x-ray mirror is described by the Coddington’s equations

(2)
(3)

where p is the object distance from the crystal, qm (qs) is the image distance from the crystal in the meridional (sagittal) plane, and R is the bending radius which also defines the Rowland circle by RRowland = R/2. The system is astigmatic, since the meridional and sagittal focal lengths are different for Bragg angles ϑ ≠ 90°. One can still achieve a good image when the crystal is operated at near-normal incidence (sinϑ ≈ 1) and when the object is placed midway between the sagittal and meridional foci, at the circle of least confusion which is at8 

(4)

Here, M = q/p is the image magnification and the image distance q is calculated as

(5)
FIG. 1.

Schematic of a generic backlighter system using a spherically bent crystal and a laser-created x-ray source on the Rowland circle. An object at distance p from the crystal will be imaged to a detector placed at a distance q. The incidence angle of the x-rays at the crystal is the Bragg angle ϑ.

FIG. 1.

Schematic of a generic backlighter system using a spherically bent crystal and a laser-created x-ray source on the Rowland circle. An object at distance p from the crystal will be imaged to a detector placed at a distance q. The incidence angle of the x-rays at the crystal is the Bragg angle ϑ.

Close modal

Neglecting manufacturing imperfections such as local variations of the crystal surface or bending radius, the spatial resolution σ of an imaging system with crystal aperture L is defined by astigmatism. Using the positions p and q defined above, the spatial resolution is almost equal in both the meridional and sagittal directions and scales as22,24

(6)

The spatial resolution deteriorates quickly for decreasing Bragg angles (ϑ → 0), and it is proportional to the crystal aperture size. A self-emission imaging system utilizes the entire crystal aperture L in sagittal direction, which means the resolution can be further improved by limiting the crystal aperture at the cost of throughput.8 

In a backlighter configuration, L depends on the projected size of the backlighter source onto the crystal, using the object plane as origin. If the source of diameter Δs is on the Rowland circle at a distance Rsinϑ from the crystal, L = LBL, with

(7)

Typical backlighter source sizes using a laser to create the source are on the order of 200–400 μm,19,24,44 which is much smaller than L. Hence, a backlighter system with the source at or near the Rowland circle has a higher spatial resolution than a self-emission imager for otherwise equal parameters.

Eqs. (6) and (7) can be used to find the smallest allowable Bragg angle for a given imaging system and desired resolution. For this work we require a spatial resolution of σ = 10 μm or better for crystal substrates with an L = 10 mm aperture. For simplicity, for backlighter geometries, we consider only configurations with the source on the Rowland circle. The source can be placed anywhere between this position and just behind the object. A source just behind the object recovers a self-emission geometry. However, placing the source on the Rowland circle leads to the smallest LBL and therefore best spatial resolution, or vice-versa, to the smallest allowable Bragg angle.

We choose a high magnification, M ≫ 1. Therefore, the magnification plays no role in determining the limiting Bragg angle. Solving for ϑ yields

(8)

for a self-emission imaging system, and

(9)

for a backlighter configuration with a 300-μm-diameter source on the Rowland circle.

To provide the spatial resolution of 10 μm or better, the crystals need to be of optical quality when bent. Hence, we use only α-quartz, Ge, Si, mica, GaAs, and InAs as crystal materials in the search. GaAs, while essentially identical to Ge in its crystal structure and density, needs to be included because it is a two-compound crystal and has more allowed reflections. Its use as a high-quality spectrometer has been demonstrated in Ref. 45. An imaging device using an InAs crystal has not been published yet, but since single-crystal InAs is a well-known material in the semiconductor industry there is no reason to believe it could not be used as a spherical-crystal imaging device similar to Ge or GaAs.

The generated image needs a minimum number of photons per detector resolution element to provide sufficient contrast for the desired resolution.46 Calculations for the image brightness are given in Refs. 22–26 and 47. Most of these references assumed a point source in the object plane; Refs. 23 and 24 expand these calculations for extended sources. Generally, the image fluence (photons per square-micron) at the detector Id depends on the magnification M, the crystal reflection efficiency η, the number of photons N emitted by the source, the crystal collection solid angle Ω, and the area Aobj of the object plane24 

(10)

For any given source, crystal aperture (solid angle), magnification, and object plane, the crystal reflection efficiency η determines the overall throughput of the crystal and hence the image brightness. Under the assumption of negligible source size22–25 

(11)

Here, Rint is the integrated reflectivity of the crystal and ΔE/E the relative linewidth of the spectral line used for imaging.

At first glance Eq. (11) implies that high-resolution systems close to 90 are inefficient, as limϑ90(1/tanϑ)0. However, Rint is changing with the Bragg angle as well (it becomes larger for ϑ → 90). With the help of Eq. (1) and under the approximation that the integrated reflectivity RintRpΔϑ, where Rp is the peak reflectivity and Δϑ the width of the rocking curve, the ratio

(12)

The spectral bandwidth of the crystal ΔEc/Ec is constant for σ-polarized x-rays reflecting off a flat crystal (Tab. IV in Ref. 48). Rp is not necessarily constant, and for π-polarized x-rays the bandwidth can change significantly with x-ray energy for any given crystal. Here, we concentrate on spherical crystals and unpolarized x-rays, hence the integrated reflectivity is a linear combination of π- and σ-polarization results. The scaling of Rint versus Bragg angle for selected spherical crystals was examined using the xcrystal_bent module of the X-ray Oriented Programs (XOP) code suite.49 Fig. 2 shows a few examples for different crystals covering the energy range from 1 to 23 keV. With the exception of quartz (1 0 1), the ratio Rint/tanϑ slowly increases for ϑ → 90; generally the values stay within about ±15% of the average for the Bragg-angle range considered here. The reflectivity of quartz (1 0 1) might be affected by the Si K-edge at 1.840 keV. Calculations predict a fast change in the reflectivity across the Si edge,56 yet the exact contribution from the edge is a work in progress at the moment.

FIG. 2.

Reflection efficiency vs. Bragg angle for arbitrarily selected crystals and Miller indices, respectively, spanning energies from 1 to 23 keV. The data points were calculated with the xcrystal_bent module of XOP; the connecting lines serve as guides for the eye. The grey area in between the dashed lines shows the average value (black line) ±15%.

FIG. 2.

Reflection efficiency vs. Bragg angle for arbitrarily selected crystals and Miller indices, respectively, spanning energies from 1 to 23 keV. The data points were calculated with the xcrystal_bent module of XOP; the connecting lines serve as guides for the eye. The grey area in between the dashed lines shows the average value (black line) ±15%.

Close modal

Since the spherical crystal bandwidth is approximately constant for the unpolarized x-rays for most of the energies and Bragg angles 75ϑ ≤ 90 considered here, the only requirement for the efficiency of the imaging system is Rint > 0. However, multiple matches for a specific x-ray energy (or spectral line) that have different Bragg angles will be sorted by Rint/tanϑ to determine the most efficient matching pair.

1. Cubic GaAs, Ge, InAs, and Si crystals

The crystal structure and Miller-index combination determine the calculated lattice spacing. The simplest crystals in our search have cubic crystal structure. The lattice spacing d of a cubic crystal with the lattice constant a is calculated as

(13)

The resulting lattice spacing is then used with the Bragg equation (Eq. (1)) to calculate the resulting Bragg angle for each x-ray energy. However, satisfying the Bragg equation is not the only requirement for Bragg reflection, as it only defines the diffraction conditions for primitive unit cells such as cubic and tetragonal, where the atoms sit at unit-cell corners. Non-primitive unit cells with atoms at additional places can cause out-of-phase scattering to occur at certain Bragg angles. As a result, Bragg reflections do not necessarily exist for any set of planes or particular combinations of hkl. The reflective strength of a crystal plane is proportional to the structure factor |S|2. If |S|2 = 0, then the atomic scattering vectors cancel out and the spectral reflection is systematically extinct.

This requirement of |S|2≠0 results in selection rules for Bragg reflection. The diamond face-centered cubic crystals considered here (Ge, Si, GaAs, InAs) have |S|2≠0 when hkl are all odd, or hkl are all even and h + k + l = 4n, where n ∈ ℕ.50 Hence, the lowest-possible hkl combination for Bragg reflection is for the (1 1 1) plane, which also determines the lowest possible x-ray energy Emin (for ϑ = 90) that the crystal can reflect.

Table II lists the unit-cell parameters and minimum energies for the crystals used in our search. The maximum energy is not limited. Our limit of hklmax = (20 20 20) and ϑmin = 75 results in maximum energies of about 30–80 keV, depending on the crystal, which is well beyond the maximum energy of the x-ray emission lines considered here.

TABLE II.

Unit-cell parameters for the crystals used in our search. Values were taken from the DABAX library of XOP.49 

Crystala (Å)b (Å)c (Å)β ()Emin (eV)
Ge 5.657 35 5.657 35 5.657 35 90 1898 
GaAs 5.653 70 5.653 70 5.653 70 90 1899 
InAs 6.036 00 6.036 00 6.036 00 90 1779 
Si 5.430 70 5.430 70 5.430 70 90 1977 
Quartz 4.913 04 4.913 04 5.404 63 90 1147 
Mica 5.189 00 8.995 00 20.097 0 95.18 619 
Crystala (Å)b (Å)c (Å)β ()Emin (eV)
Ge 5.657 35 5.657 35 5.657 35 90 1898 
GaAs 5.653 70 5.653 70 5.653 70 90 1899 
InAs 6.036 00 6.036 00 6.036 00 90 1779 
Si 5.430 70 5.430 70 5.430 70 90 1977 
Quartz 4.913 04 4.913 04 5.404 63 90 1147 
Mica 5.189 00 8.995 00 20.097 0 95.18 619 

Eq. (13) shows that any permutation of a specific set of Miller indices hkl will have identical lattice spacing—for example (2 6 8), (6 2 8), (6 8 2), and so on. Calculations with XOP reveal that for these cases also Rint is identical and hence these can be seen as identical crystal cuts.

Not only permutations of hkl are identical but any combination for which the quadratic sum h2 + k2 + l2 is equal are identical as well, such as (3 5 13) and (1 9 11). These also have identical Rint. In the tables shown below these identical matches will be combined and marked accordingly.

2. Hexagonal quartz crystal

A more complex crystal in our search is quartz, which has a hexagonal crystal structure. Its lattice spacing can be calculated as

(14)

Accordingly, Miller-index combinations with constant l but h and k swapped will result in identical lattice spacing. However, XOP indicates that the integrated reflectivity Rint may be different even though the lattice spacing is the same. See, for example, Ti Kα and quartz (2 0 3) and (0 2 3) in Table V.

Selection rules for the allowed reflections of quartz are more complex, see, e.g., Table V in Ref. 50. Reflections are forbidden when h + k + l is even and (hk) an odd multiple of 3, and h + k + l is odd and (hk) an even multiple of 3. The lowest possible reflection is for hkl = (1 0 0).

3. Monoclinic mica crystal

The most complex crystal is mica (or Muscovite), which is a monoclinic unit-cell crystal with space group C2/m. The lattice spacing is given by

(15)

Hence, each Miller-index combination results in a different lattice spacing. The empirical selection rules for allowed Bragg reflections using our XOP calculations are the following: h + k must be even and l can be arbitrary. However, if k = 0, then both h and l must be even (or zero).

Furthermore, with c = 20.097 Å, mica has the longest unit-cell parameter of the investigated crystals and therefore can be used for low-energy reflections down to 619 eV, using hkl = (0 0 2).

The constraints from above will be used in the following to find all possible spectral-line and x-ray-crystal combinations that can be used for imaging. The crystals are limited to those mentioned in Table II. X-ray sources were limited to spectral emission lines of the elements Ne (Z = 10, E ≈ 1 keV) to Sn (Z = 50, E ≈ 25 keV). For these elements the search for matching combinations only includes the brightest lines typically observed: the He-like resonance and intercombination lines for hot plasmas from pulsed-power or nanosecond-laser experiments, and the Kα doublet for fast-electron-driven targets as observed, for example, in short-pulse laser experiments. Table III in the  Appendix shows the spectral-line transitions and their corresponding energies, taken from Refs. 51 and 52.

The search relies heavily on XOP, both for the calculations of the 2d-spacing as well as for calculations of Rint by integrating the rocking curve. XOP calculates the lattice spacing using unit-cell parameters (a, b, c, α, β, γ) and the position and atomic number of the atoms in the unit cell (after symmetry operations) from its own database. It should be noted that the XOP calculations are here used as a guide to judge the relative efficiency of the found matches, and not to predict the absolute efficiency.

We use the multilamellar model53,54 to calculate the rocking curve for bent crystals. All calculations are done for a crystal with R = 250 mm and 70-μm thickness using unpolarized x-rays. The peak crystal reflectivity in these calculations is strongly affected by the temperature (Debye-Waller) factor.55 In most cases setting the temperature factor between 0.8 and 0.9 yields satisfying results; a lower temperature factor results in a lower integrated reflectivity. Here, we set a constant factor of 0.8 for all calculations, which may underestimate some reflection efficiencies.

Rocking curve calculations using the multilamellar model have been benchmarked for curved crystals both at the low-energy56 and high-energy ends55 of our range. Good agreement with the measurements in these references was found. Koch et al. have measured the integrated reflectivity of a high-Miller-index Germanium crystal with hkl = (15 7 7) using an Ag Kα source. XOP calculations agreed within a factor of two. The reference states that a bent Ge (15 7 7) crystal may have an integrated reflectivity up to above-10 μrad for Ru Heα at 19.7 keV. This is in line with our calculations, which result in Rint = 9 μrad as shown in Table IV.

In rare cases XOP results can be off by more than a factor of two. One example is quartz (4 6 8) and Zr Kα2 at 15.691 keV. Rocking curve calculations using XOP showed that this might be an efficient combination;40 later measurements57 showed that Rint is about five times lower than predicted. Our own measurements using a spherical quartz (4 6 8) crystal confirm these results. However, the scope of this paper is to identify the most promising spectral-line and crystal combinations for any given x-ray source within an order-of-magnitude estimate. Once a candidate has been identified, further work can be spent in characterizing the crystal.

We do not restrict the search for matches to Miller indices that are already known and tabulated in the literature (see, e.g., Table 4-1 in Ref. 51). Instead, we first use XOP to calculate the 2d-spacings for all Miller-index ranges hkl from zero to 20 each (i.e., starting at hkl = (0 0 0) and ending at hkl = (20 20 20)). Hence, higher-order reflections up to m = 20 and high-Miller-index combinations such as (15 7 7)41 and others are included in our search.

By default, XOP is run from a graphical user interface (GUI). We wrote custom routines to automatically change the input for calculations without invoking the GUI. These modifications allow us to generate a data table for each crystal material containing hkl values and their corresponding 2d-spacing if the structure factor |S|2≠0. By only saving 2d values for |S|2≠0, the calculations fulfill the selection rules for Bragg reflection. For reference, the supplemental spreadsheet file (see Sec. V) contains all the calculated 2d-spacings.

After generating all the 2d-spacing tables with XOP, a Python script is used to perform the actual search for matching combinations. Fig. 3 shows a flow diagram of the script. After initialization with the desired parameters, the list of spectral lines and the 2d-spacing data tables is read into memory. The script iterates through all Miller-index and spectral-line combinations for each crystal, looks up the corresponding 2d spacing, calculates the Bragg angle using Eq. (1), and checks if the Bragg angle is within the limits discussed in Sec. II A. If a matching combination is found, the Python script communicates the parameters to custom-written routines that prepare the input for the module cryst_ml from XOP. This module uses the multilamellar model to calculate the rocking curve of a bent crystal for the respective x-ray energy. The resulting rocking curve is then numerically integrated using the custom routine to obtain Rint. This value is then communicated back to the Python script, which, if Rint > 2.0 × 10−5, saves the result in a spreadsheet for post-processing.

FIG. 3.

Flow diagram of the spectral-line searching code. (a) shows the flow of main routine, which is used to initialize the search parameters, read the input data from files and to execute the loop over all search parameters. (b) shows the flow of the calculate_crystal_reflection subroutine, which calculates the Bragg angle, decides if it falls within the search range, calls the custom routines that interface with XOP to calculate Rint, and saves to results to a file for post-processing.

FIG. 3.

Flow diagram of the spectral-line searching code. (a) shows the flow of main routine, which is used to initialize the search parameters, read the input data from files and to execute the loop over all search parameters. (b) shows the flow of the calculate_crystal_reflection subroutine, which calculates the Bragg angle, decides if it falls within the search range, calls the custom routines that interface with XOP to calculate Rint, and saves to results to a file for post-processing.

Close modal

The total number of tested combinations is 9 112 824. Out of these more than 9.1 × 106 combinations, the script identified 37 265 possible matches with 75ϑ ≤ 90. After testing for the integrated reflectivity, 10 652 matches were confirmed for He-like spectral lines and 10 628 for Kα lines. Interestingly, an almost equal number of matches for both hot (Heα) and cold (Kα) emission lines was found. The script further found 1058 combinations that could be used as self-emission imagers with 87ϑ ≤ 89.

In Sections IV A and IV B, we present the results in a tabulated form, separated by combinations for self-emission imaging and backlighting systems. The data are further down-selected for each element by sorting for Rint/tanϑ in descending order. If more than three possible matching combinations are found, only the top three matches are shown for clarity. For cases where the top three matches have low Bragg angles close to 75, more than three matches are shown to avoid that the reader gets the impression that many matches only work for Bragg angles near 75, which is not the case. For some elements we show the top matches up to crystals that are used or have been tested in applications (e.g., quartz (2 2 3) for Mn or quartz (5 0 2) for Ni). In backlighter cases where both the w and y lines are promising but with very similar parameters, we only show the match with the higher Bragg angle for clarity and to show the variation in crystal materials that can be used.

A spreadsheet containing all identified combinations can be found in the supplementary material to this article.

Tables IV and V show matching combinations with ϑ ≥ 87, suitable for self-emission imaging. Except for some elements that emit at a low energy, such as Ne or Al, the script identified matching combinations for almost every element. The lowest possible helium-like match is using a mica (0 2 4) crystal with the Si intercombination line at 1.854 keV, at a Bragg angle of ϑ = 88.58. The lowest possible Kα imager is using Ca Kα2 at 3.688 keV and a mica (2 4 1) crystal, at a Bragg angle of ϑ = 88.01. Mica and quartz were found to be the most efficient crystals up to about 13–15 keV. The higher-Z materials Ge, GaAs, and InAs were found to be the most efficient crystals above 15 keV.

Some matches were found for a single crystal material but with multiple combinations of hkl, having different Bragg angles and/or reflectivity Rint. For example, a source emitting the Ge Kα1 line at 9.886 keV can be imaged using a Si crystal with either the (1 1 1) reflection in fifth order or (1 5 7) in first order and permutations thereof. The XOP calculation suggests that Rint is equal for both combinations. In this example, Si (1 1 1) reflects x-ray energies in integer multiples of 1.977 keV, whereas Si (1 5 7) reflects x-ray energies in integer multiples of 9.886 keV. Hence, to avoid both lower- and higher-order reflections contaminating the image, the (1 5 7) reflection would be preferred.

Tables VI and VII show matching combinations with ϑ ≥ 75, suitable for imaging with the source on the Rowland circle. Again the script identified matching combinations for almost every element. In many cases the script identified first-order reflections using high Miller-index combinations. As described above, a first-order reflection is preferred over an otherwise identical higher-order reflection due to potential contamination of the image by lower-order reflections.

Furthermore, for Kα x-ray sources, we only show the Kα1 results since the Kα2 line is spectrally very close and the resulting Bragg angle is very close to the Kα1 result. In most cases, the slight difference in the Bragg angle is compensated by Rint such that Rint/tanϑ is nearly identical. On top of that the Kα1 line has a 50% higher amplitude, rendering a Kα1 imaging system more effective than a Kα2 system.

The lowest-energy backlighter match for an x-ray source with helium-like line emission is using a mica (1 1 2) crystal with the Al intercombination line at 1.588 keV, at a Bragg angle of ϑ = 79.06. The lowest-energy Kα imager is using Mg Kα1 at 1254 keV and a mica (0 0 4) crystal, at a Bragg angle of ϑ = 81.19.

Interestingly, the 6.151-keV backlighter system using a quartz (2 2 3) crystal, which is a standard diagnostic at Sandia’s Z Pulsed Power Facility,38 is only the fourth-most efficient choice for this element. However, the match using a quartz (2 1 4) crystal, while having an almost equal integrated reflectivity as quartz (2 2 3), has a less favorable Bragg angle that results in inferior spatial resolution. Remembering that InAs up to now has not been used for x-ray imaging, the combination using quartz (2 2 3) is actually the most-efficient working combination.

We have used a computer script, coupled to some modules of XOP, to find all possible spectral-line and x-ray-crystal combinations that can be used for self-emission imaging and backlighting using x-ray sources emitting either Kα1,2 spectral lines or the resonance or intercombination lines from He-like ions. The used crystals in this search were restricted to Ge, GaAs, InAs, Si, quartz, and mica because the optical quality of these crystals is near-perfect and images with a high spatial resolution have been demonstrated. It may be possible to use other crystals such as KAP and RAP for high-resolution imaging, however this still needs to be demonstrated and is left for future work.

Out of the more than 9.1 × 106 possible combinations, the computer script identified about 21 000 matching combinations that fulfill all the constraints on the Bragg angle, which defines the spatial resolution, on reflectivity, which defines the image brightness, and on crystal structure, which defines the lattice spacing and allowed reflections.

Tables IVVII show the results, separated by combinations for self-emission imaging and backlighting systems. The data are sorted for Rint/tan ϑ in descending order for each element. If more than three possible matching combinations are found, only the top three matches are shown for clarity. For cases where the top three matches have low Bragg angles close to 75, more than three matches are shown to avoid that the reader gets the impression that many matches only work for Bragg angles near 75, which is not the case. A spreadsheet containing all identified combinations can be found in the supplementary material to this article.

A general trend of more possible matches for higher x-ray energies could be observed. For example, only two helium-like backlighter matching combinations were found at 1.6 keV (mica (1 1 2) and Al w or y) versus 588 possible matches for He-like Sn.

Higher x-ray energies require higher Miller-index reflections to reduce the lattice spacing d as described in Sec. II C, which can be satisfied by many first-order, high-Miller-index combinations for each crystal, eliminating the need to use higher-order reflections of low-Miller-index cuts that can be difficult to interpret. Recently, the integrated reflectivity of a high-Miller-index Germanium crystal was found to be in a good agreement with the calculations, demonstrating that arbitrary choices of Miller indices in Ge crystals can be used.41 

Spectral lines and crystals that are often used in experiments, such as quartz (2 2 3) and Mn Heα, quartz (1 0 1) and Si Heα for backlighting, and quartz (2 0 3) and Ti Kα1 or quartz (4 2 2) and Cu Kα1, were confirmed to be the most efficient (or practical) combinations for these elements.

These results may help to identify new applications for backlighting and self-emission imaging. Using the data presented here, it should be possible to find a suitable imaging combination using an x-ray energy or x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems from the literature. For example, a backlighter experiment may be performed using an x-ray energy that results in optimum transmission at the object, leading to the best-possible contrast in the image or at a Bragg angle that supports the required spatial resolution.

See supplementary material for a spreadsheet containing all identified matching spectral-line and crystal combinations, as well as for the calculated 2d-spacings for the crystals in Table II.

We thank Tommy Ao, Ross E. Falcon, Matthias Geissel, Eric C. Harding, John L. Porter, Patrick K. Rambo, Jens Schwarz, Daniel B. Sinars, and Christopher S. Speas at Sandia National Laboratories, and Jeffrey A. Koch at National Security Technologies LLC for the support and helpful discussions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

TABLE III.

Spectral lines and their energies in eV are used as input for the systematic search, taken from Refs. 51 and 52. For helium-like energies, w denotes the 1s 2p1P1 → 1s21S0 resonance line transition; y denotes the 1s 2p3P1 → 1s21S0 intercombination line.58 

ColdHelium-like
ElementKα2Kα1yw
10 Ne 848.61 848.61 914.9 922.1 
11 Na 1 040.98 1 040.98 1 118.8 1 126.9 
12 Mg 1 253.4 1 253.7 1 343.2 1 352.3 
13 Al 1 486.3 1 486.7 1 588.3 1 598.4 
14 Si 1 739.4 1 740 1 853.9 1 865 
15 P 2 012.7 2 013.7 2 140.3 2 152.6 
16 S 2 306.7 2 307.9 2 447.3 2 460.8 
17 Cl 2 620.8 2 622.4 2 775.1 2 789.8 
18 Ar 2 955.6 2 957.7 3 124 3 140 
19 K 3 311.2 3 313.9 3 493 3 511 
20 Ca 3 688.1 3 691.7 3 883 3 903 
21 Sc 4 086.1 4 090.6 4 295 4 316 
22 Ti 4 504.9 4 510.8 4 727 4 750 
23 V 4 944.6 4 952.2 5 180 5 205 
24 Cr 5 405.5 5 414.7 5 655 5 682 
25 Mn 5 887.6 5 898.8 6 151 6 181 
26 Fe 6 390.8 6 403.8 6 668 6 701 
27 Co 6 915.3 6 930.3 7 206 7 242 
28 Ni 7 460.9 7 478.2 7 766 7 806 
29 Cu 8 027.8 8 047.8 8 347 8 392 
30 Zn 8 615.8 8 638.9 8 950 8 999 
31 Ga 9 224.8 9 251.7 9 575 9 628 
32 Ge 9 855.3 9 886.4 10 221 10 280 
33 As 10 508 10 543.7 10 889 10 955 
34 Se 11 181.4 11 222.4 11 579 11 652 
35 Br 11 877.6 11 924.2 12 292 12 372 
36 Kr 12 598 12 649 13 026 13 114 
37 Rb 13 335.8 13 395.3 13 783 13 880 
38 Sr 14 097.9 14 165 14 562 14 669 
39 Y 14 882.9 14 958.4 15 364 15 482 
40 Zr 15 691 15 775.1 16 189 16 318 
41 Nb 16 521 16 615.1 17 036 17 178 
42 Mo 17 374.3 17 479.3 17 907 18 062 
43 Tc 18 250.9 18 367.2 18 800 18 971 
44 Ru 19 150.5 19 279.2 19 717 19 904 
45 Rh 20 073.7 20 216.1 20 658 20 861 
46 Pd 21 020.1 21 177.1 21 622 21 843 
47 Ag 21 990.3 22 162.9 22 609 22 851 
48 Cd 22 984.05 23 173.99 23 621 23 884 
49 In 24 002.03 24 209.75 24 657 24 942 
50 Sn 25 044.04 25 271.4 25 717 26 027 
ColdHelium-like
ElementKα2Kα1yw
10 Ne 848.61 848.61 914.9 922.1 
11 Na 1 040.98 1 040.98 1 118.8 1 126.9 
12 Mg 1 253.4 1 253.7 1 343.2 1 352.3 
13 Al 1 486.3 1 486.7 1 588.3 1 598.4 
14 Si 1 739.4 1 740 1 853.9 1 865 
15 P 2 012.7 2 013.7 2 140.3 2 152.6 
16 S 2 306.7 2 307.9 2 447.3 2 460.8 
17 Cl 2 620.8 2 622.4 2 775.1 2 789.8 
18 Ar 2 955.6 2 957.7 3 124 3 140 
19 K 3 311.2 3 313.9 3 493 3 511 
20 Ca 3 688.1 3 691.7 3 883 3 903 
21 Sc 4 086.1 4 090.6 4 295 4 316 
22 Ti 4 504.9 4 510.8 4 727 4 750 
23 V 4 944.6 4 952.2 5 180 5 205 
24 Cr 5 405.5 5 414.7 5 655 5 682 
25 Mn 5 887.6 5 898.8 6 151 6 181 
26 Fe 6 390.8 6 403.8 6 668 6 701 
27 Co 6 915.3 6 930.3 7 206 7 242 
28 Ni 7 460.9 7 478.2 7 766 7 806 
29 Cu 8 027.8 8 047.8 8 347 8 392 
30 Zn 8 615.8 8 638.9 8 950 8 999 
31 Ga 9 224.8 9 251.7 9 575 9 628 
32 Ge 9 855.3 9 886.4 10 221 10 280 
33 As 10 508 10 543.7 10 889 10 955 
34 Se 11 181.4 11 222.4 11 579 11 652 
35 Br 11 877.6 11 924.2 12 292 12 372 
36 Kr 12 598 12 649 13 026 13 114 
37 Rb 13 335.8 13 395.3 13 783 13 880 
38 Sr 14 097.9 14 165 14 562 14 669 
39 Y 14 882.9 14 958.4 15 364 15 482 
40 Zr 15 691 15 775.1 16 189 16 318 
41 Nb 16 521 16 615.1 17 036 17 178 
42 Mo 17 374.3 17 479.3 17 907 18 062 
43 Tc 18 250.9 18 367.2 18 800 18 971 
44 Ru 19 150.5 19 279.2 19 717 19 904 
45 Rh 20 073.7 20 216.1 20 658 20 861 
46 Pd 21 020.1 21 177.1 21 622 21 843 
47 Ag 21 990.3 22 162.9 22 609 22 851 
48 Cd 22 984.05 23 173.99 23 621 23 884 
49 In 24 002.03 24 209.75 24 657 24 942 
50 Sn 25 044.04 25 271.4 25 717 26 027 
TABLE IV.

Self-emission imager combinations for helium-like ions, with ϑ ≥ 87°. The number in brackets next to the element name is the count of identified matches for this element. * highlights combinations that have been used in an application. w denotes the 1s 2p1P1 → 1s21S0 resonance line transition, y denotes the 1s 2p3P1 → 1s21S0 intercombination line.58 The x-ray energy is given in eV, 2d spacing in Å, Bragg angle ϑ in degrees, Rint in μrad, Rint/tan ϑ × 107, and spatial resolution σ in μm. For calculations of Rint, we assume spherical crystals with 250 mm radius of curvature and 70 μm thickness. X-rays are unpolarized and the temperature factor was set to 0.8. The spatial resolution was calculated using Eq. (8), assuming an L = 10 mm crystal aperture. Eq. (8) also determines the Bragg angle range of ϑ ≥ 87° by requiring that σ ≤ 10 μm. Only the top three matching combinations are shown for clarity. A spreadsheet containing all identified combinations can be found in the supplementary material to this article.

ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
14 Si (1) y 1 853.9 Mica 0 2 4 6.6898 88.58 238.5 59.1 3.1 
17 Cl (2) y 2 775.1 Quartz 1 1 1 4.4727 87.3 159.5 75.2 11.1 
 y 2 775.1 Mica 0 4 1 4.4694 88.45 47.5 12.9 3.7 
19 K (2) w 3 511 Mica 0 4 7 3.5352 87.33 38.1 17.8 10.9 
 y 3 493 Mica 1 1 10 3.5528 87.51 0.5 0.2 9.4 
21 Sc (1) w 4 316 Mica 2 2 10 2.8755 87.45 59.5 26.5 9.9 
22 Ti (1) y 4 727 Mica 2 4 9 2.6235 88.74 0.9 0.2 2.4 
23 V (2) y 5 180 Quartz 2 2 1 2.3954 87.7 133.6 53.7 8.1 
 y 5 180 Mica 3 3 9 2.3946 88.26 157.3 47.8 4.6 
24 Cr (2) w 5 682 Mica 3 1 13 2.1831 88.25 10.1 3.1 4.7 
 y 5 655 Mica 0 8 4 2.1940 87.83 4.2 1.6 7.2 
25 Mn (2) w 6 181 Mica 0 8 9 2.0068 88.25 2.8 0.8 4.7 
 y 6 151 Mica 1 1 19 2.0161 88.88 0.5 0.1 1.9 
26 Fe (3) y 6 668 Mica 1 7 14 1.8596 89.25 139.6 18.3 0.9 
 w 6 701 Mica 0 6 17 1.8519 87.58 7.3 3.1 8.9 
 w 6 701 Mica 2 2 19 1.8516 87.79 0.6 0.2 7.4 
27 Co (5) y 7 206 Mica 4 0 16 1.7214 88.22 115.6 35.9 4.8 
 y 7 206 Mica 6 0 0 1.7226 87.22 28.8 14.0 11.8 
 w 7 242 Mica 4 6 10 1.7128 88.29 8.6 2.6 4.5 
28 Ni (5) w 7 806 Mica 5 5 10 1.5901 87.29 32.0 15.2 11.2 
 w 7 806 Mica 5 3 13 1.5898 87.56 30.6 13.1 9.1 
 y 7 766 Mica 5 7 2 1.5966 89.36 108.8 12.2 0.6 
29 Cu (3) w 8 392 Mica 3 9 13 1.4792 87.17 20.4 10.1 12.2 
 w 8 392 Mica 4 4 19 1.4782 88.17 7.3 2.3 5.1 
 y 8 347 Mica 2 8 18 1.4856 89 4.8 0.8 1.5 
30 Zn (6) y 8 950 Mica 0 12 11 1.3861 87.99 9.6 3.4 6.2 
 y 8 950 Mica 5 9 6 1.3869 87.22 3.3 1.6 11.8 
 y 8 950 Mica 2 10 16 1.3865 87.58 3.1 1.3 8.9 
31 Ga (7) w 9 628 Quartz 1 6 1 1.2885 88.09 25.0 8.3 5.6 
 w 9 628 Quartz 2 0 8 1.2878 89.59 87.6 6.3 0.3 
 w 9 628 Quartz 6 1 1 1.2885 88.09 18.3 6.1 5.6 
32 Ge (30) w 10 280 Ge 6 6 4a 1.2062 89.35 1084.1 123.0 0.6 
 y 10 221 Si 8 4 0a 1.2143 87.34 161.5 75.0 10.8 
 y 10 221 InAs 7 5 5a 1.2133 88.85 316.0 63.4 2.0 
33 As (4) y 10 889 Mica 8 0 14 1.1394 87.91 29.8 10.9 6.7 
 w 10 955 Mica 3 15 0 1.1327 87.72 13.0 5.2 7.9 
 w 10 955 Mica 8 4 12 1.1321 88.7 9.9 2.2 2.6 
34 Se (20) w 11 652 Si 10 2 0,a8 6 2a 1.0651 87.53 92.8 40.0 9.3 
 w 11 652 Mica 0 16 12 1.0655 87.04 13.0 6.7 13.3 
 y 11 579 Quartz 3 6 0,6 3 0 1.0721 87.13 11.8 5.9 12.5 
35 Br (8) w 12 372 Mica 9 7 9 1.0022 89.21 25.2 3.5 1.0 
 y 12 292 Mica 3 15 17 1.0091 88.34 5.2 1.5 4.2 
 w 12 372 Mica 7 13 3 1.0022 89.46 9.9 0.9 0.4 
36 Kr (9) w 13 114 InAs 9 9 1a 0.9456 89.1 150.8 23.7 1.2 
 w 13 114 Quartz 2 3 10 0.9456 88.78 49.0 10.4 2.3 
 w 13 114 Mica 7 11 19 0.9466 87.11 0.9 0.5 12.7 
37 Rb (28) w 13 880 GaAs 12 4 0a 0.8939 87.78 39.1 15.2 7.5 
 y 13 783 Quartz 7 2 6 0.9004 87.44 10.4 4.7 10.0 
 y 13 783 InAs 12 6 0,a10 8 4a 0.8998 88.66 16.2 3.8 2.7 
38 Sr (30) y 14 562 GaAs 12 4 4a 0.8523 87.36 30.9 14.3 10.6 
 w 14 669 Quartz 7 3 6 0.8454 88.67 38.0 8.8 2.7 
 w 14 669 Ge 13 3 1,a11 7 3,a9 7 7a 0.8457 88.05 21.1 7.2 5.8 
39 Y (26) w 15 482 InAs 13 7 3a 0.8013 88.14 47.8 15.5 5.3 
 w 15 482 InAs 3 13 7 0.8013 88.14 47.8 15.5 5.3 
 w 15 482 InAs 15 1 1,a11 9 5a 0.8013 88.14 31.4 10.2 5.3 
40 Zr (27) y 16 189 InAs 12 10 2,a14 6 4a 0.7666 87.52 48.0 20.8 9.4 
 w 16 318 Quartz 5 5 9 0.7605 87.52 16.1 7.0 9.4 
 w 16 318 Quartz 0 6 12 0.7604 87.78 7.6 2.9 7.5 
41 Nb (27) w 17 036 InAs 15 7 1,a13 9 5a 0.7280 88.68 51.6 11.9 2.7 
 w 17 036 InAs 15 5 5a 0.7280 88.68 35.5 8.2 2.7 
 w 17 036 Quartz 0 11 5 0.7284 87.69 5.2 2.1 8.1 
42 Mo (12) w 17 907 Ge 11 11 5,a13 7 7a 0.6925 89.18 39.0 5.6 1.0 
 w 17 907 Quartz 5 9 0,9 5 0 0.6925 88.93 6.9 1.3 1.7 
 w 17 907 Quartz 10 1 8 0.6933 87.09 2.0 1.0 12.9 
43 Tc (53) y 18 971 GaAs 13 11 3,a15 7 5a 0.6539 88.06 14.8 5.0 5.7 
 y 18 971 Ge 17 3 1,a13 11 3,a15 7 5,a13 7 9a 0.6543 87.16 9.6 4.8 12.3 
 y 18 971 GaAs 17 3 1,a13 9 7a 0.6539 88.06 13.3 4.5 5.7 
44 Ru (40) w 19 717 GaAs 11 11 9a 0.6292 88.11 14.1 4.6 5.4 
 w 19 717 Ge 17 5 3,a15 7 7,a11 11 9a 0.6296 87.2 9.0 4.4 11.9 
 w 19 717 GaAs 17 5 3,a15 7 7a 0.6292 88.11 12.7 4.2 5.4 
45 Rh (42) w 20 658 Ge 15 11 3,a15 9 7a 0.6005 88.06 11.8 4.0 5.7 
 w 20 658 Quartz 0 0 18 0.6005 88.09 5.3 1.8 5.6 
 y 20 861 Quartz 10 0 13 0.5947 87.97 4.2 1.5 6.3 
46 Pd (33) w 21 622 InAs 15 13 7a 0.5736 88.72 21.9 4.9 2.5 
 w 21 622 InAs 19 9 1a 0.5736 88.72 16.8 3.8 2.5 
 y 21 843 Quartz 1 0 19 0.5676 89.47 9.4 0.9 0.4 
47 Ag (26) w 22 609 Si 14 14 0,a18 8 2,a16 10 6a 0.5486 88.47 4.8 1.3 3.6 
 y 22 851 Si 20 0 0,a16 12 0a 0.5431 87.56 2.9 1.2 9.1 
 y 22 851 Quartz 2 10 14 0.5431 87.41 1.6 0.7 10.2 
48 Cd (47) w 23 621 GaAs 20 8 0,a16 12 8a 0.5249 89.29 45.7 5.7 0.8 
 w 23 621 InAs 16 16 4,a20 8 8a 0.5254 87.55 13.1 5.6 9.1 
 w 23 621 Ge 20 8 0,a16 12 8a 0.5253 87.82 14.6 5.6 7.2 
49 In (6) w 24 657 InAs 16 16 8a 0.5030 88.54 17.7 4.5 3.2 
 y 24 942 Quartz 6 9 14 0.4976 87.46 0.5 0.2 9.8 
 y 24 942 Quartz 12 7 5 0.4976 87.48 0.4 0.2 9.7 
50 Sn (47) y 26 027 GaAs 17 15 7,a19 11 9a 0.4765 88.42 7.4 2.0 3.8 
 y 26 027 Ge 17 15 7,a19 11 9,a15 13 13a 0.4769 87.4 4.3 2.0 10.3 
 y 26 027 GaAs 15 13 13a 0.4765 88.42 6.9 1.9 3.8 
ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
14 Si (1) y 1 853.9 Mica 0 2 4 6.6898 88.58 238.5 59.1 3.1 
17 Cl (2) y 2 775.1 Quartz 1 1 1 4.4727 87.3 159.5 75.2 11.1 
 y 2 775.1 Mica 0 4 1 4.4694 88.45 47.5 12.9 3.7 
19 K (2) w 3 511 Mica 0 4 7 3.5352 87.33 38.1 17.8 10.9 
 y 3 493 Mica 1 1 10 3.5528 87.51 0.5 0.2 9.4 
21 Sc (1) w 4 316 Mica 2 2 10 2.8755 87.45 59.5 26.5 9.9 
22 Ti (1) y 4 727 Mica 2 4 9 2.6235 88.74 0.9 0.2 2.4 
23 V (2) y 5 180 Quartz 2 2 1 2.3954 87.7 133.6 53.7 8.1 
 y 5 180 Mica 3 3 9 2.3946 88.26 157.3 47.8 4.6 
24 Cr (2) w 5 682 Mica 3 1 13 2.1831 88.25 10.1 3.1 4.7 
 y 5 655 Mica 0 8 4 2.1940 87.83 4.2 1.6 7.2 
25 Mn (2) w 6 181 Mica 0 8 9 2.0068 88.25 2.8 0.8 4.7 
 y 6 151 Mica 1 1 19 2.0161 88.88 0.5 0.1 1.9 
26 Fe (3) y 6 668 Mica 1 7 14 1.8596 89.25 139.6 18.3 0.9 
 w 6 701 Mica 0 6 17 1.8519 87.58 7.3 3.1 8.9 
 w 6 701 Mica 2 2 19 1.8516 87.79 0.6 0.2 7.4 
27 Co (5) y 7 206 Mica 4 0 16 1.7214 88.22 115.6 35.9 4.8 
 y 7 206 Mica 6 0 0 1.7226 87.22 28.8 14.0 11.8 
 w 7 242 Mica 4 6 10 1.7128 88.29 8.6 2.6 4.5 
28 Ni (5) w 7 806 Mica 5 5 10 1.5901 87.29 32.0 15.2 11.2 
 w 7 806 Mica 5 3 13 1.5898 87.56 30.6 13.1 9.1 
 y 7 766 Mica 5 7 2 1.5966 89.36 108.8 12.2 0.6 
29 Cu (3) w 8 392 Mica 3 9 13 1.4792 87.17 20.4 10.1 12.2 
 w 8 392 Mica 4 4 19 1.4782 88.17 7.3 2.3 5.1 
 y 8 347 Mica 2 8 18 1.4856 89 4.8 0.8 1.5 
30 Zn (6) y 8 950 Mica 0 12 11 1.3861 87.99 9.6 3.4 6.2 
 y 8 950 Mica 5 9 6 1.3869 87.22 3.3 1.6 11.8 
 y 8 950 Mica 2 10 16 1.3865 87.58 3.1 1.3 8.9 
31 Ga (7) w 9 628 Quartz 1 6 1 1.2885 88.09 25.0 8.3 5.6 
 w 9 628 Quartz 2 0 8 1.2878 89.59 87.6 6.3 0.3 
 w 9 628 Quartz 6 1 1 1.2885 88.09 18.3 6.1 5.6 
32 Ge (30) w 10 280 Ge 6 6 4a 1.2062 89.35 1084.1 123.0 0.6 
 y 10 221 Si 8 4 0a 1.2143 87.34 161.5 75.0 10.8 
 y 10 221 InAs 7 5 5a 1.2133 88.85 316.0 63.4 2.0 
33 As (4) y 10 889 Mica 8 0 14 1.1394 87.91 29.8 10.9 6.7 
 w 10 955 Mica 3 15 0 1.1327 87.72 13.0 5.2 7.9 
 w 10 955 Mica 8 4 12 1.1321 88.7 9.9 2.2 2.6 
34 Se (20) w 11 652 Si 10 2 0,a8 6 2a 1.0651 87.53 92.8 40.0 9.3 
 w 11 652 Mica 0 16 12 1.0655 87.04 13.0 6.7 13.3 
 y 11 579 Quartz 3 6 0,6 3 0 1.0721 87.13 11.8 5.9 12.5 
35 Br (8) w 12 372 Mica 9 7 9 1.0022 89.21 25.2 3.5 1.0 
 y 12 292 Mica 3 15 17 1.0091 88.34 5.2 1.5 4.2 
 w 12 372 Mica 7 13 3 1.0022 89.46 9.9 0.9 0.4 
36 Kr (9) w 13 114 InAs 9 9 1a 0.9456 89.1 150.8 23.7 1.2 
 w 13 114 Quartz 2 3 10 0.9456 88.78 49.0 10.4 2.3 
 w 13 114 Mica 7 11 19 0.9466 87.11 0.9 0.5 12.7 
37 Rb (28) w 13 880 GaAs 12 4 0a 0.8939 87.78 39.1 15.2 7.5 
 y 13 783 Quartz 7 2 6 0.9004 87.44 10.4 4.7 10.0 
 y 13 783 InAs 12 6 0,a10 8 4a 0.8998 88.66 16.2 3.8 2.7 
38 Sr (30) y 14 562 GaAs 12 4 4a 0.8523 87.36 30.9 14.3 10.6 
 w 14 669 Quartz 7 3 6 0.8454 88.67 38.0 8.8 2.7 
 w 14 669 Ge 13 3 1,a11 7 3,a9 7 7a 0.8457 88.05 21.1 7.2 5.8 
39 Y (26) w 15 482 InAs 13 7 3a 0.8013 88.14 47.8 15.5 5.3 
 w 15 482 InAs 3 13 7 0.8013 88.14 47.8 15.5 5.3 
 w 15 482 InAs 15 1 1,a11 9 5a 0.8013 88.14 31.4 10.2 5.3 
40 Zr (27) y 16 189 InAs 12 10 2,a14 6 4a 0.7666 87.52 48.0 20.8 9.4 
 w 16 318 Quartz 5 5 9 0.7605 87.52 16.1 7.0 9.4 
 w 16 318 Quartz 0 6 12 0.7604 87.78 7.6 2.9 7.5 
41 Nb (27) w 17 036 InAs 15 7 1,a13 9 5a 0.7280 88.68 51.6 11.9 2.7 
 w 17 036 InAs 15 5 5a 0.7280 88.68 35.5 8.2 2.7 
 w 17 036 Quartz 0 11 5 0.7284 87.69 5.2 2.1 8.1 
42 Mo (12) w 17 907 Ge 11 11 5,a13 7 7a 0.6925 89.18 39.0 5.6 1.0 
 w 17 907 Quartz 5 9 0,9 5 0 0.6925 88.93 6.9 1.3 1.7 
 w 17 907 Quartz 10 1 8 0.6933 87.09 2.0 1.0 12.9 
43 Tc (53) y 18 971 GaAs 13 11 3,a15 7 5a 0.6539 88.06 14.8 5.0 5.7 
 y 18 971 Ge 17 3 1,a13 11 3,a15 7 5,a13 7 9a 0.6543 87.16 9.6 4.8 12.3 
 y 18 971 GaAs 17 3 1,a13 9 7a 0.6539 88.06 13.3 4.5 5.7 
44 Ru (40) w 19 717 GaAs 11 11 9a 0.6292 88.11 14.1 4.6 5.4 
 w 19 717 Ge 17 5 3,a15 7 7,a11 11 9a 0.6296 87.2 9.0 4.4 11.9 
 w 19 717 GaAs 17 5 3,a15 7 7a 0.6292 88.11 12.7 4.2 5.4 
45 Rh (42) w 20 658 Ge 15 11 3,a15 9 7a 0.6005 88.06 11.8 4.0 5.7 
 w 20 658 Quartz 0 0 18 0.6005 88.09 5.3 1.8 5.6 
 y 20 861 Quartz 10 0 13 0.5947 87.97 4.2 1.5 6.3 
46 Pd (33) w 21 622 InAs 15 13 7a 0.5736 88.72 21.9 4.9 2.5 
 w 21 622 InAs 19 9 1a 0.5736 88.72 16.8 3.8 2.5 
 y 21 843 Quartz 1 0 19 0.5676 89.47 9.4 0.9 0.4 
47 Ag (26) w 22 609 Si 14 14 0,a18 8 2,a16 10 6a 0.5486 88.47 4.8 1.3 3.6 
 y 22 851 Si 20 0 0,a16 12 0a 0.5431 87.56 2.9 1.2 9.1 
 y 22 851 Quartz 2 10 14 0.5431 87.41 1.6 0.7 10.2 
48 Cd (47) w 23 621 GaAs 20 8 0,a16 12 8a 0.5249 89.29 45.7 5.7 0.8 
 w 23 621 InAs 16 16 4,a20 8 8a 0.5254 87.55 13.1 5.6 9.1 
 w 23 621 Ge 20 8 0,a16 12 8a 0.5253 87.82 14.6 5.6 7.2 
49 In (6) w 24 657 InAs 16 16 8a 0.5030 88.54 17.7 4.5 3.2 
 y 24 942 Quartz 6 9 14 0.4976 87.46 0.5 0.2 9.8 
 y 24 942 Quartz 12 7 5 0.4976 87.48 0.4 0.2 9.7 
50 Sn (47) y 26 027 GaAs 17 15 7,a19 11 9a 0.4765 88.42 7.4 2.0 3.8 
 y 26 027 Ge 17 15 7,a19 11 9,a15 13 13a 0.4769 87.4 4.3 2.0 10.3 
 y 26 027 GaAs 15 13 13a 0.4765 88.42 6.9 1.9 3.8 
a

Also any permutation of hkl.

TABLE V.

Self-emission imager combinations for Kα emission lines, with ϑ ≥ 87°. The number in the brackets next to the element name is the count of identified matches for this element. * highlights combinations that have been used in an application. The x-ray energy is given in eV, 2d spacing in Å, Bragg angle ϑ in degrees, Rint in μrad, Rint/tan ϑ × 107, and spatial resolution σ in μm. For calculations of Rint, we assume spherical crystals with 250  mm radius of curvature and 70 μm thickness. X-rays are unpolarized and the temperature factor was set to 0.8. The spatial resolution was calculated using Eq. (8), assuming an L = 10  mm crystal aperture. Eq. (8) also determines the Bragg angle range of ϑ ≥ 87° by requiring that σ ≤ 10 μm. Only the top three matching combinations are shown for clarity. A spreadsheet containing all identified combinations can be found in the supplementary material to this article.

ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
20 Ca (1) Kα2 3 688.1 Mica 2 4 1 3.3638 88.01 26.2 9.1 6.0 
21 Sc (2) Kα2 4 086.1 Mica 2 0 10 3.0348 88.99 697.9 123.0 1.6 
 Kα1 4 090.6 Mica 2 0 10 3.0348 87.13 237.8 119.2 12.5 
* 22 Ti (2) Kα1 4 510.8 Quartz 2 0 3 2.7496 88.43 881.0 241.5 3.8 
 Kα1 4 510.8 Quartz 0 2 3 2.7496 88.43 389.9 106.9 3.8 
23 V (1) Kα1 4 952.2 Mica 1 1 15 2.5046 88.4 2.5 0.7 3.9 
24 Cr (1) Kα2 5 405.5 Mica 0 4 15 2.2950 88.01 9.1 3.2 6.0 
25 Mn (1) Kα2 5 887.6 Mica 1 3 17 2.1084 87.16 174.2 86.4 12.3 
26 Fe (2) Kα1 6 403.8 Mica 1 9 3 1.9369 88.4 209.6 58.6 3.9 
 Kα2 6 390.8 Mica 4 4 9 1.9408 88.37 6.0 1.7 4.0 
27 Co (2) Kα2 6 915.3 Quartz 1 2 5 1.7942 87.8 205.9 79.1 7.4 
 Kα2 6 915.3 Quartz 2 1 5 1.7942 87.8 22.0 8.4 7.4 
28 Ni (5) Kα1 7 478.2 Quartz 0 2 6 1.6590 87.99 450.5 158.1 6.2 
 Kα2 7 460.9 Mica 5 3 11 1.6635 87.37 109.8 50.4 10.5 
 Kα1 7 478.2 Quartz 2 0 6 1.6590 87.99 98.4 34.5 6.2 
29 Cu(4) Kα1 8 047.8 Quartz 2 4 2 1.5414 88.17 188.8 60.3 5.1 
 Kα1 8 047.8 Mica 4 2 19 1.5419 87.61 30.0 12.5 8.7 
Kα1 8 047.8 Quartz 4 2 2 1.5414 88.17 37.8 12.1 5.1 
30 Zn (7) Kα2 8 615.8 Quartz 0 5 4 1.4401 87.78 214.1 83.0 7.5 
 Kα1 8 638.9 Mica 0 12 8 1.4361 87.96 77.9 27.7 6.3 
 Kα1 8 638.9 Mica 5 7 11 1.4360 88.08 30.3 10.2 5.6 
31 Ga (4) Kα2 9 224.8 Mica 2 12 10 1.3441 89.38 116.0 12.6 0.6 
 Kα2 9 224.8 Mica 5 5 18 1.3450 87.78 1.5 0.6 7.5 
 Kα2 9 224.8 Mica 6 6 11 1.3453 87.53 0.9 0.4 9.3 
32 Ge (10) Kα1 9 886.4 Si 7 5 1,a5 5 5 1.2542 89.35 447.1 50.7 0.6 
 Kα1 9 886.4 Mica 6 4 18 1.2542 89.43 62.0 6.2 0.5 
 Kα1 9 886.4 Mica 8 2 4 1.2545 88.53 23.1 5.9 3.3 
33 As(4) Kα2 10 508 Quartz 2 6 0,6 2 0 1.1801 89.04 23.2 3.9 1.4 
 Kα1 10 543.7 Mica 1 15 5 1.1766 88.06 4.8 1.6 5.7 
 Kα1 10 543.7 Mica 7 5 15 1.1767 87.86 1.5 0.5 7.0 
34 Se(21) Kα1 11 222.4 Mica 7 5 19 1.1048 89.79 391.6 14.4 0.1 
 Kα1 11 222.4 Quartz 3 4 6 1.1050 89.03 66.7 11.3 1.4 
 Kα1 11 222.4 Mica 3 15 7 1.1049 89.42 90.9 9.2 0.5 
35 Br (8) Kα2 11 877.6 Quartz 0 6 7 1.0446 87.9 27.7 10.1 6.7 
 Kα1 11 924.2 Quartz 7 1 4 1.0403 88.22 25.0 7.8 4.8 
 Kα1 11 924.2 Quartz 1 7 4 1.0403 88.22 14.0 4.4 4.8 
36 Kr(15) Kα1 12 649 Mica 8 10 12 0.9807 88.25 9.1 2.8 4.7 
 Kα1 12 649 Mica 2 18 0 0.9813 87.32 2.5 1.1 10.9 
 Kα2 12 598 Mica 8 6 20 0.9854 87.1 1.3 0.7 12.8 
37 Rb (10) Kα1 13 395.3 Mica 11 3 1 0.9261 88.06 8.8 3.0 5.7 
 Kα2 13 335.8 Mica 11 1 3 0.9302 88.22 5.4 1.7 4.8 
 Kα2 13 335.8 Mica 6 16 5 0.9298 89.2 10.2 1.4 1.0 
38 Sr (9) Kα2 14 097.9 Quartz 6 5 2 0.8801 87.73 4.1 1.6 7.8 
 Kα2 14 097.9 Quartz 4 7 1 0.8795 89.54 19.1 1.5 0.3 
 Kα2 14 097.9 Quartz 9 1 2 0.8801 87.73 3.7 1.5 7.8 
39 Y (32) Kα2 14 882.9 Ge 12 6 2a 0.8341 87.1 27.6 14.0 12.8 
 Kα2 14 882.9 GaAs 12 6 2a 0.8336 87.97 39.1 13.8 6.3 
 Kα1 14 958.4 Quartz 4 0 12 0.8295 87.79 9.9 3.8 7.4 
* 40 Zr (10) Kα2 15 691 Quartz 4 6 8 0.7912 87.01 7.5 3.9 13.6 
 Kα1 15 775.1 Quartz 3 9 0,9 3 0 0.7867 87.46 5.4 2.4 9.8 
 Kα2 15 691 Mica 11 7 19 0.7904 88.53 8.4 2.2 3.3 
41 Nb (38) Kα2 16 521 GaAs 13 7 3a 0.7505 89.44 75.0 7.3 0.5 
 Kα2 16 521 GaAs 15 1 1,a11 9 5a 0.7505 89.44 65.9 6.4 0.5 
 Kα2 16 521 Ge 15 1 1,a13 7 1,a11 9 5a 0.7510 87.88 16.2 6.0 6.8 
42 Mo (49) Kα2 17 374.3 GaAs 13 9 1,a11 9 7a 0.7137 88.98 34.4 6.1 1.6 
 Kα2 17 374.3 Ge 15 5 1,a13 9 1,a11 9 7,a11 11 3a 0.7142 87.7 13.9 5.6 8.1 
 Kα2 17 374.3 GaAs 15 5 1,a11 11 3a 0.7137 88.98 30.5 5.4 1.6 
43 Tc (30) Kα1 18 367.2 GaAs 12 10 6a 0.6757 87.36 21.8 10.1 10.6 
 Kα2 18 250.9 InAs 17 5 1,a15 9 a 0.6802 87.14 18.6 9.3 12.5 
 Kα2 18 250.9 InAs 13 11 5a 0.6802 87.14 13.2 6.6 12.5 
44 Ru (28) Kα1 19 279.2 InAs 12 12 8a 0.6434 88.13 39.0 12.7 5.3 
 Kα2 19 150.5 InAs 15 11 1,a17 7 3a 0.6481 87.45 17.7 7.9 9.9 
 Kα2 19 150.5 InAs 13 13 3a 0.6481 87.45 12.8 5.7 9.9 
45 Rh (38) Kα1 20 216.1 InAs 17 7 7a 0.6137 88.05 18.7 6.4 5.8 
 Kα1 20 216.1 InAs 19 5 1,a13 13 7,a15 9 9a 0.6137 88.05 13.9 4.7 5.8 
 Kα1 20 216.1 GaAs 13 13 1,a17 5 5,a13 11 7a 0.6141 87.01 8.3 4.4 13.6 
46 Pd (43) Kα1 21 177.1 Si 18 4 2,a14 12 2,a12 10 10a 0.5856 88.72 8.0 1.8 2.5 
 Kα2 21 020.1 Si 17 7 1,a13 13 1,a17 5 5,a13 11 7a 0.5899 89.1 5.7 0.9 1.2 
 Kα2 21 020.1 Quartz 11 1 11 0.5900 88.46 1.9 0.5 3.6 
47 Ag (55) Kα1 22 162.9 Ge 20 2 2,a14 14 4a 0.5602 87.06 13.0 6.7 13.2 
 Kα1 22 162.9 GaAs 20 2 2,a14 14 4a 0.5598 87.9 18.2 6.7 6.7 
 Kα1 22 162.9 Si 18 6 4,a14 12 6a 0.5601 87.12 2.8 1.4 12.6 
48 Cd (7) Kα2 22 984.05 Quartz 5 7 15 0.5399 87.7 1.3 0.5 8.1 
 Kα2 22 984.05 Quartz 9 9 3 0.5397 88.11 0.9 0.3 5.4 
 Kα1 23 173.99 Quartz 3 14 3 0.5354 87.72 0.5 0.2 7.9 
49 In (23) Kα1 24 209.75 Ge 16 14 6,a18 10 8a 0.5122 89.09 32.5 5.2 1.3 
 Kα1 24 209.75 InAs 19 13 5a 0.5124 88.02 6.4 2.2 6.0 
 Kα1 24 209.75 Quartz 5 5 18 0.5124 88.12 2.0 0.6 5.4 
50 Sn (39) Kα1 25 271.4 GaAs 15 15 9,a17 11 11a 0.4907 88.91 12.2 2.3 1.8 
 Kα1 25 271.4 Ge 19 13 1,a19 11 7,a17 11 11,a15 15 9a 0.4910 87.66 5.4 2.2 8.3 
 Kα1 25 271.4 GaAs 19 13 1,a19 11 7a 0.4907 88.91 11.4 2.2 1.8 
ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
20 Ca (1) Kα2 3 688.1 Mica 2 4 1 3.3638 88.01 26.2 9.1 6.0 
21 Sc (2) Kα2 4 086.1 Mica 2 0 10 3.0348 88.99 697.9 123.0 1.6 
 Kα1 4 090.6 Mica 2 0 10 3.0348 87.13 237.8 119.2 12.5 
* 22 Ti (2) Kα1 4 510.8 Quartz 2 0 3 2.7496 88.43 881.0 241.5 3.8 
 Kα1 4 510.8 Quartz 0 2 3 2.7496 88.43 389.9 106.9 3.8 
23 V (1) Kα1 4 952.2 Mica 1 1 15 2.5046 88.4 2.5 0.7 3.9 
24 Cr (1) Kα2 5 405.5 Mica 0 4 15 2.2950 88.01 9.1 3.2 6.0 
25 Mn (1) Kα2 5 887.6 Mica 1 3 17 2.1084 87.16 174.2 86.4 12.3 
26 Fe (2) Kα1 6 403.8 Mica 1 9 3 1.9369 88.4 209.6 58.6 3.9 
 Kα2 6 390.8 Mica 4 4 9 1.9408 88.37 6.0 1.7 4.0 
27 Co (2) Kα2 6 915.3 Quartz 1 2 5 1.7942 87.8 205.9 79.1 7.4 
 Kα2 6 915.3 Quartz 2 1 5 1.7942 87.8 22.0 8.4 7.4 
28 Ni (5) Kα1 7 478.2 Quartz 0 2 6 1.6590 87.99 450.5 158.1 6.2 
 Kα2 7 460.9 Mica 5 3 11 1.6635 87.37 109.8 50.4 10.5 
 Kα1 7 478.2 Quartz 2 0 6 1.6590 87.99 98.4 34.5 6.2 
29 Cu(4) Kα1 8 047.8 Quartz 2 4 2 1.5414 88.17 188.8 60.3 5.1 
 Kα1 8 047.8 Mica 4 2 19 1.5419 87.61 30.0 12.5 8.7 
Kα1 8 047.8 Quartz 4 2 2 1.5414 88.17 37.8 12.1 5.1 
30 Zn (7) Kα2 8 615.8 Quartz 0 5 4 1.4401 87.78 214.1 83.0 7.5 
 Kα1 8 638.9 Mica 0 12 8 1.4361 87.96 77.9 27.7 6.3 
 Kα1 8 638.9 Mica 5 7 11 1.4360 88.08 30.3 10.2 5.6 
31 Ga (4) Kα2 9 224.8 Mica 2 12 10 1.3441 89.38 116.0 12.6 0.6 
 Kα2 9 224.8 Mica 5 5 18 1.3450 87.78 1.5 0.6 7.5 
 Kα2 9 224.8 Mica 6 6 11 1.3453 87.53 0.9 0.4 9.3 
32 Ge (10) Kα1 9 886.4 Si 7 5 1,a5 5 5 1.2542 89.35 447.1 50.7 0.6 
 Kα1 9 886.4 Mica 6 4 18 1.2542 89.43 62.0 6.2 0.5 
 Kα1 9 886.4 Mica 8 2 4 1.2545 88.53 23.1 5.9 3.3 
33 As(4) Kα2 10 508 Quartz 2 6 0,6 2 0 1.1801 89.04 23.2 3.9 1.4 
 Kα1 10 543.7 Mica 1 15 5 1.1766 88.06 4.8 1.6 5.7 
 Kα1 10 543.7 Mica 7 5 15 1.1767 87.86 1.5 0.5 7.0 
34 Se(21) Kα1 11 222.4 Mica 7 5 19 1.1048 89.79 391.6 14.4 0.1 
 Kα1 11 222.4 Quartz 3 4 6 1.1050 89.03 66.7 11.3 1.4 
 Kα1 11 222.4 Mica 3 15 7 1.1049 89.42 90.9 9.2 0.5 
35 Br (8) Kα2 11 877.6 Quartz 0 6 7 1.0446 87.9 27.7 10.1 6.7 
 Kα1 11 924.2 Quartz 7 1 4 1.0403 88.22 25.0 7.8 4.8 
 Kα1 11 924.2 Quartz 1 7 4 1.0403 88.22 14.0 4.4 4.8 
36 Kr(15) Kα1 12 649 Mica 8 10 12 0.9807 88.25 9.1 2.8 4.7 
 Kα1 12 649 Mica 2 18 0 0.9813 87.32 2.5 1.1 10.9 
 Kα2 12 598 Mica 8 6 20 0.9854 87.1 1.3 0.7 12.8 
37 Rb (10) Kα1 13 395.3 Mica 11 3 1 0.9261 88.06 8.8 3.0 5.7 
 Kα2 13 335.8 Mica 11 1 3 0.9302 88.22 5.4 1.7 4.8 
 Kα2 13 335.8 Mica 6 16 5 0.9298 89.2 10.2 1.4 1.0 
38 Sr (9) Kα2 14 097.9 Quartz 6 5 2 0.8801 87.73 4.1 1.6 7.8 
 Kα2 14 097.9 Quartz 4 7 1 0.8795 89.54 19.1 1.5 0.3 
 Kα2 14 097.9 Quartz 9 1 2 0.8801 87.73 3.7 1.5 7.8 
39 Y (32) Kα2 14 882.9 Ge 12 6 2a 0.8341 87.1 27.6 14.0 12.8 
 Kα2 14 882.9 GaAs 12 6 2a 0.8336 87.97 39.1 13.8 6.3 
 Kα1 14 958.4 Quartz 4 0 12 0.8295 87.79 9.9 3.8 7.4 
* 40 Zr (10) Kα2 15 691 Quartz 4 6 8 0.7912 87.01 7.5 3.9 13.6 
 Kα1 15 775.1 Quartz 3 9 0,9 3 0 0.7867 87.46 5.4 2.4 9.8 
 Kα2 15 691 Mica 11 7 19 0.7904 88.53 8.4 2.2 3.3 
41 Nb (38) Kα2 16 521 GaAs 13 7 3a 0.7505 89.44 75.0 7.3 0.5 
 Kα2 16 521 GaAs 15 1 1,a11 9 5a 0.7505 89.44 65.9 6.4 0.5 
 Kα2 16 521 Ge 15 1 1,a13 7 1,a11 9 5a 0.7510 87.88 16.2 6.0 6.8 
42 Mo (49) Kα2 17 374.3 GaAs 13 9 1,a11 9 7a 0.7137 88.98 34.4 6.1 1.6 
 Kα2 17 374.3 Ge 15 5 1,a13 9 1,a11 9 7,a11 11 3a 0.7142 87.7 13.9 5.6 8.1 
 Kα2 17 374.3 GaAs 15 5 1,a11 11 3a 0.7137 88.98 30.5 5.4 1.6 
43 Tc (30) Kα1 18 367.2 GaAs 12 10 6a 0.6757 87.36 21.8 10.1 10.6 
 Kα2 18 250.9 InAs 17 5 1,a15 9 a 0.6802 87.14 18.6 9.3 12.5 
 Kα2 18 250.9 InAs 13 11 5a 0.6802 87.14 13.2 6.6 12.5 
44 Ru (28) Kα1 19 279.2 InAs 12 12 8a 0.6434 88.13 39.0 12.7 5.3 
 Kα2 19 150.5 InAs 15 11 1,a17 7 3a 0.6481 87.45 17.7 7.9 9.9 
 Kα2 19 150.5 InAs 13 13 3a 0.6481 87.45 12.8 5.7 9.9 
45 Rh (38) Kα1 20 216.1 InAs 17 7 7a 0.6137 88.05 18.7 6.4 5.8 
 Kα1 20 216.1 InAs 19 5 1,a13 13 7,a15 9 9a 0.6137 88.05 13.9 4.7 5.8 
 Kα1 20 216.1 GaAs 13 13 1,a17 5 5,a13 11 7a 0.6141 87.01 8.3 4.4 13.6 
46 Pd (43) Kα1 21 177.1 Si 18 4 2,a14 12 2,a12 10 10a 0.5856 88.72 8.0 1.8 2.5 
 Kα2 21 020.1 Si 17 7 1,a13 13 1,a17 5 5,a13 11 7a 0.5899 89.1 5.7 0.9 1.2 
 Kα2 21 020.1 Quartz 11 1 11 0.5900 88.46 1.9 0.5 3.6 
47 Ag (55) Kα1 22 162.9 Ge 20 2 2,a14 14 4a 0.5602 87.06 13.0 6.7 13.2 
 Kα1 22 162.9 GaAs 20 2 2,a14 14 4a 0.5598 87.9 18.2 6.7 6.7 
 Kα1 22 162.9 Si 18 6 4,a14 12 6a 0.5601 87.12 2.8 1.4 12.6 
48 Cd (7) Kα2 22 984.05 Quartz 5 7 15 0.5399 87.7 1.3 0.5 8.1 
 Kα2 22 984.05 Quartz 9 9 3 0.5397 88.11 0.9 0.3 5.4 
 Kα1 23 173.99 Quartz 3 14 3 0.5354 87.72 0.5 0.2 7.9 
49 In (23) Kα1 24 209.75 Ge 16 14 6,a18 10 8a 0.5122 89.09 32.5 5.2 1.3 
 Kα1 24 209.75 InAs 19 13 5a 0.5124 88.02 6.4 2.2 6.0 
 Kα1 24 209.75 Quartz 5 5 18 0.5124 88.12 2.0 0.6 5.4 
50 Sn (39) Kα1 25 271.4 GaAs 15 15 9,a17 11 11a 0.4907 88.91 12.2 2.3 1.8 
 Kα1 25 271.4 Ge 19 13 1,a19 11 7,a17 11 11,a15 15 9a 0.4910 87.66 5.4 2.2 8.3 
 Kα1 25 271.4 GaAs 19 13 1,a19 11 7a 0.4907 88.91 11.4 2.2 1.8 
a

Also any permutation of hkl.

TABLE VI.

Backlighter combinations for helium-like ions, with ϑ ≥ 75°. The number in brackets next to the element name is the count of identified matches for this element. * highlights combinations that have been used in an application. w denotes the 1s 2p1P1 → 1s21S0 resonance line transition, y denotes the 1s 2p3P1 → 1s21S0 intercombination line.58 The x-ray energy is given in eV, 2d spacing in Å, Bragg angle ϑ in degrees, Rint in μrad, Rint/tan ϑ × 107, and spatial resolution σ in μm. For calculations of Rint we assume spherical crystals with 250  mm radius of curvature and 70 μm thickness. X-rays are unpolarized and the temperature factor was set to 0.8. The spatial resolution was calculated using Eq. (9), assuming a 300-μm-diameter source. Eq. (9) also determines the Bragg angle range of ϑ ≥ 75° by requiring that σ ≤ 10 μm. If more than three possible matching combinations are found only the top three to six matches (in cases where the top matches have low Bragg angles) are shown for clarity. A spreadsheet containing all identified combinations can be found in the supplementary material to this article.

ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
13 Al (2) y 1 588.3 Mica 1 1 2 7.9505 79.06 4.5 8.7 5.7 
 w 1 598.4 Mica 1 1 2 7.9505 77.33 3.8 8.6 7.7 
14 Si (5) w 1 865 Quartz 0 1 1 6.6863 83.86 421.2 453.1 1.7 
w 1 865 Quartz 1 0 1 6.6863 83.86 185.4 199.4 1.7 
 w 1 865 Mica 0 0 6 6.6716 85.17 181.0 152.9 1.1 
15 P (1) y 2 140.3 Mica 0 2 5 5.9803 75.62 43.2 110.8 10.0 
16 S (8) y 2 447.3 Mica 1 3 1 5.1144 82.12 154.0 213.2 2.9 
 w 2 460.8 Mica 1 3 1 5.1144 80.11 120.8 210.5 4.6 
 y 2 447.3 Mica 2 0 0 5.1678 78.62 52.7 106.1 6.1 
17 Cl (8) y 2 775.1 Quartz 1 0 2 4.5622 78.32 64.2 132.8 6.5 
 y 2 775.1 Quartz 1 1 1 4.4727 87.3 159.5 75.2 0.3 
 w 2 789.8 Quartz 1 1 1 4.4727 83.53 64.9 73.6 1.9 
18 Ar (14) * y 3 124 Ge 2 2 0a 4.0004 82.8 843.2 1065.1 2.4 
 y 3 124 GaAs 2 2 0a 3.9978 83.09 878.6 1064.7 2.2 
 w 3 140 Ge 2 2 0a 4.0004 80.77 647.8 1052.6 4.0 
19 K (16) y 3 493 InAs 3 1 1a 3.6398 77.21 193.2 438.5 7.8 
 w 3 511 InAs 3 1 1a 3.6398 75.97 172.6 431.4 9.5 
 y 3 493 Quartz 1 1 2 3.6354 77.52 77.8 172.3 7.4 
20 Ca (25) y 3 883 Si 3 1 1a 3.2748 77.16 81.7 186.3 7.9 
 y 3 883 Mica 1 3 9 3.3032 75.16 43.7 115.7 10.7 
 y 3 883 Mica 3 1 3 3.2127 83.65 32.15 35.78 5.7 
21 Sc (19) y 4 295 Quartz 1 1 3 2.9055 83.48 53.0 60.6 2.0 
 w 4 316 Quartz 1 1 3 2.9055 81.38 39.3 59.6 3.5 
 y 4 295 Mica 0 2 13 2.9133 82.26 20.9 28.4 2.8 
22 Ti (31) y 4 727 Si 4 0 0a 2.7153 75.01 77.2 206.7 11.0 
 y 4 727 Mica 2 0 12 2.6940 76.81 54.0 126.6 8.4 
 w 4 750 Mica 2 0 12 2.6940 75.67 48.6 124.1 10.0 
23 V (2) y 5 180 Quartz 2 2 1 2.3954 87.7 133.6 53.7 0.2 
 y 5 180 Mica 3 3 9 2.3946 88.26 157.3 47.8 0.1 
24 Cr (58) y 5 655 Si 4 2 2a 2.2171 81.46 142.4 213.8 3.4 
 w 5 682 Si 4 2 2a 2.2171 79.8 115.0 206.8 4.9 
 y 5 655 Mica 4 0 8 2.2157 81.69 77.8 113.7 3.2 
 w 5 682 Mica 4 0 8 2.2157 79.99 63.2 111.6 4.7 
25 Mn (69) y 6 151 InAs 5 3 1a 2.0405 81.05 87.9 138.5 3.7 
 w 6 181 InAs 5 3 1a 2.0405 79.43 73.2 136.7 5.3 
y 6 151 Quartz 2 1 4 2.0690 76.96 44.1 102.1 8.2 
 y 6 151 Quartz 2 2 3 2.0297 83.27 86.0 101.5 2.1 
 w 6 181 Quartz 2 1 4 2.0690 75.81 40.0 101.0 9.7 
w 6 181 Quartz 2 2 3 2.0297 81.22 64.5 99.6 3.6 
26 Fe (103) y 6 668 Si 4 4 0a 1.9200 75.56 74.0 190.4 10.1 
 y 6 668 InAs 6 2 0a 1.9087 76.94 67.4 156.4 8.2 
 w 6 701 InAs 6 2 0a 1.9087 75.78 61.0 154.5 9.8 
27 Co (92) w 7 242 Si 6 2 0a 1.7173 85.49 256.7 202.5 0.9 
 y 7 206 GaAs 3 3 5a 1.7244 86.2 233.3 155.0 0.7 
 y 7 206 Ge 3 3 5a 1.7255 85.68 202.7 153.1 0.9 
 w 7 242 GaAs 3 3 5a 1.7244 83.14 125.2 150.6 2.2 
 w 7 242 Ge 3 3 5a 1.7255 82.84 118.6 149.0 2.4 
28 Ni (105) y 7 766 Ge 4 4 4 1.6331 77.84 85.4 184.1 7.0 
 y 7 766 GaAs 4 4 4 1.6321 78.01 86.7 184.1 6.8 
y 7 766 Quartz 5 0 2 1.6233 79.57 91.2 168.0 5.1 
29 Cu (131) y 8 347 Ge 2 4 6a 1.5120 79.23 98.0 186.4 5.5 
 y 8 347 GaAs 2 4 6a 1.5110 79.43 99.7 186.1 5.3 
 y 8 347 InAs 8 0 0a 1.509 79.85 60.96 109.1 14.8 
30 Zn (175) y 8 950 Ge 8 0 0a 1.4143 78.37 83.1 171.1 6.4 
 y 8 950 GaAs 8 0 0a 1.4134 78.55 84.1 170.4 6.2 
 w 8 999 Ge 7 3 3a 1.3823 85.35 130.2 105.9 1.0 
 w 8 999 GaAs 7 3 3a 1.3814 85.83 144.3 105.2 0.8 
31 Ga (198) y 9 575 Ge 6 6 0,a8 2 2a 1.3335 76.18 58.6 144.2 9.2 
 y 9 575 GaAs 6 6 0,a8 2 2a 1.3326 76.34 58.4 142.0 9.0 
 y 9 575 Ge 1 5 7,a5 5 5 1.3065 82.35 64.0 86.0 2.7 
 y 9 575 GaAs 1 5 7,a5 5 5 1.3057 82.63 66.2 85.7 2.5 
32 Ge (262) w 10 280 Ge 6 6 4a 1.2062 89.35 1084.1 123.0 0.0 
 y 10 221 InAs 8 4 4a 1.2321 79.91 50.5 89.8 4.8 
 y 10 221 Si 8 4 0a 1.2143 87.34 161.5 75.0 0.3 
 w 10 280 Si 8 4 0a 1.2143 83.31 62.1 72.9 2.1 
33 As (219) y 10 889 Ge 8 4 4a 1.1548 80.4 39.1 66.2 4.3 
 y 10 889 Si 6 6 4a 1.1578 79.55 30.5 56.3 5.1 
 y 10 889 InAs 7 7 3a 1.1670 77.33 23.3 52.5 7.7 
 y 10 889 Quartz 5 3 3 1.1519 81.3 23.6 36.2 3.5 
 y 10 889 Quartz 0 5 7 1.1436 84.65 38.5 36.1 1.3 
34 Se (237) w 11 652 InAs 8 8 0a 1.0670 85.73 87.0 64.9 0.8 
 y 11 579 InAs 10 4 2a 1.1020 76.32 26.6 64.8 9.0 
 w 11 652 InAs 11 1 1a 1.0885 77.84 20.0 43.1 7.0 
 w 11 652 Si 10 2 0,a8 6 2 1.0651 87.53 92.8 40.0 0.3 
35 Br (305) w 12 372 InAs 8 8 4a12 0 0a 1.0060 84.98 37.5 33.0 1.2 
 y 12 292 InAs 3 7 9a 1.0239 80.09 14.7 25.6 4.6 
 w 12 372 Quartz 3 5 6 1.0077 83.98 19.0 20.0 1.7 
36 Kr (335) y 13 026 InAs 12 4 0a 0.9544 85.8 43.2 31.7 0.8 
 w 13 114 InAs 9 9 1a 0.9456 89.1 150.8 23.7 0.0 
 y 13 026 Quartz 5 5 0 0.9826 75.62 9.2 23.6 10.0 
 y 13 026 Si 8 8 0a 0.9600 82.51 16.9 22.2 2.6 
37 Rb (427) y 13 783 InAs 12 4 4a 0.9100 81.32 18.9 28.8 3.5 
 y 13 783 InAs 9 7 7a 0.9023 85.52 26.1 20.5 0.9 
 y 13 783 Si 8 8 4,a12 0 0 0.9051 83.64 14.6 16.3 5.7 
39 Y (387) y 15 364 InAs 14 4 2,a12 6 6,a10 10 4a 0.8214 79.25 12.2 23.2 5.5 
 w 15 482 InAs 12 8 4a 0.8066 83.15 19.1 22.9 2.2 
 y 15 364 InAs 13 5 5a 0.8157 81.59 10.6 15.6 3.3 
40 Zr (487) y 16 189 InAs 14 6 4,a12 10 2a 0.7666 87.52 48.0 20.8 0.3 
 y 16 189 InAs 14 6 0a 0.7926 75.08 7.7 20.5 10.8 
 w 16 318 InAs 14 6 4,a12 10 2a 0.7666 82.38 15.2 20.3 2.7 
41 Nb (475) w 17 036 InAs 16 4 0,a12 8 8a 0.7320 83.87 16.9 18.2 1.7 
 w 17 036 InAs 16 2 2,a14 8 2,a10 10 8a 0.7430 78.39 8.8 18.2 6.4 
 y 17 178 InAs 13 9 5a15 7 1a 0.7280 82.51 8.6 11.35 7.9 
42 Mo (537) w 17 907 InAs 16 6 2,a14 10 0,a14 8 6a 0.7017 80.67 9.7 15.9 4.1 
 y 18 062 InAs 16 6 2,a14 10 0 ,a14 8 6a 0.7017 78.04 7.3 15.5 6.8 
 y 18 062 InAs 12 12 4a 0.6924 82.49 11.7 15.5 2.6 
43 Tc (623) w 18 800 InAs 16 8 0a 0.6748 77.75 6.3 13.8 7.2 
 w 18 800 InAs 18 2 0,a16 6 6a 0.6666 81.65 9.3 13.7 3.2 
 y 18 971 InAs 16 8 0a 0.6748 75.57 5.2 13.4 10.1 
 y 18 971 InAs 18 2 0,a16 6 6a 0.6666 78.66 6.7 13.4 6.1 
 y 18 971 InAs 16 8 4a 0.6586 82.91 10.7 13.3 2.3 
44 Ru (670) w 19 717 InAs 18 4 2,a14 12 2,a12 10 10a 0.6509 75.04 4.4 11.8 10.9 
 w 19 717 InAs 12 12 8a 0.6434 77.76 5.4 11.8 7.1 
 w 19 717 InAs 18 6 0,a16 10 2,a14 10 8a 0.6362 81.23 7.6 11.7 3.6 
45 Rh (703) w 20 658 InAs 16 8 8a 0.6160 76.96 4.3 10.0 8.2 
 w 20 658 InAs 18 8 2,a16 10 6,a14 14 0a 0.6097 79.84 5.6 10.0 4.9 
 w 20 658 InAs 20 0 0,a16 12 0a 0.6036 83.89 9.2 9.9 1.7 
46 Pd (759) w 21 622 InAs 20 4 0,a16 12 4a 0.5919 75.65 3.3 8.4 10.0 
 w 21 622 InAs 18 10 0,a18 8 6a 0.5863 77.98 3.9 8.4 6.9 
 w 21 622 InAs 20 4 4,a12 12 12 0.5808 80.85 5.2 8.3 3.9 
47 Ag (747) w 22 609 InAs 20 8 0,a16 12 8a 0.5604 78.1 3.3 6.9 6.7 
 w 22 609 InAs 20 6 6,a18 12 2a 0.5557 80.72 4.2 6.9 4.0 
 w 22 609 InAs 20 8 4a 0.5510 84.4 7.0 6.8 1.4 
48 Cd (762) w 23 621 InAs 20 10 2,a18 12 6a 0.5377 77.45 2.6 5.7 7.5 
 w 23 621 GaAs 20 8 0,a16 12 8a 0.5249 89.29 45.7 5.7 0.0 
 w 23 621 InAs 16 16 0a 0.5335 79.69 3.1 5.7 5.0 
 w 23 621 InAs 20 8 8,a16 16 4a 0.5254 87.55 13.1 5.6 0.3 
49 In (590) w 24 657 Ge 20 8 4a 0.5164 76.82 2.1 4.9 8.3 
 w 24 657 Ge 18 10 8,a16 14 6a 0.5122 79.03 2.5 4.8 5.7 
 w 24 657 GaAs 20 6 6,a18 12 2a 0.5205 75.04 1.8 4.8 10.9 
50 Sn (588) w 25 717 GaAs 18 14 0a 0.4959 76.48 1.7 4.2 8.8 
 w 25 717 Ge 20 10 6,a18 14 4,a14 14 12a 0.4887 80.57 2.5 4.2 4.2 
 w 25 717 Ge 16 12 12,a20 12 0a 0.4851 83.62 3.72 4.2 5.7 
ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
13 Al (2) y 1 588.3 Mica 1 1 2 7.9505 79.06 4.5 8.7 5.7 
 w 1 598.4 Mica 1 1 2 7.9505 77.33 3.8 8.6 7.7 
14 Si (5) w 1 865 Quartz 0 1 1 6.6863 83.86 421.2 453.1 1.7 
w 1 865 Quartz 1 0 1 6.6863 83.86 185.4 199.4 1.7 
 w 1 865 Mica 0 0 6 6.6716 85.17 181.0 152.9 1.1 
15 P (1) y 2 140.3 Mica 0 2 5 5.9803 75.62 43.2 110.8 10.0 
16 S (8) y 2 447.3 Mica 1 3 1 5.1144 82.12 154.0 213.2 2.9 
 w 2 460.8 Mica 1 3 1 5.1144 80.11 120.8 210.5 4.6 
 y 2 447.3 Mica 2 0 0 5.1678 78.62 52.7 106.1 6.1 
17 Cl (8) y 2 775.1 Quartz 1 0 2 4.5622 78.32 64.2 132.8 6.5 
 y 2 775.1 Quartz 1 1 1 4.4727 87.3 159.5 75.2 0.3 
 w 2 789.8 Quartz 1 1 1 4.4727 83.53 64.9 73.6 1.9 
18 Ar (14) * y 3 124 Ge 2 2 0a 4.0004 82.8 843.2 1065.1 2.4 
 y 3 124 GaAs 2 2 0a 3.9978 83.09 878.6 1064.7 2.2 
 w 3 140 Ge 2 2 0a 4.0004 80.77 647.8 1052.6 4.0 
19 K (16) y 3 493 InAs 3 1 1a 3.6398 77.21 193.2 438.5 7.8 
 w 3 511 InAs 3 1 1a 3.6398 75.97 172.6 431.4 9.5 
 y 3 493 Quartz 1 1 2 3.6354 77.52 77.8 172.3 7.4 
20 Ca (25) y 3 883 Si 3 1 1a 3.2748 77.16 81.7 186.3 7.9 
 y 3 883 Mica 1 3 9 3.3032 75.16 43.7 115.7 10.7 
 y 3 883 Mica 3 1 3 3.2127 83.65 32.15 35.78 5.7 
21 Sc (19) y 4 295 Quartz 1 1 3 2.9055 83.48 53.0 60.6 2.0 
 w 4 316 Quartz 1 1 3 2.9055 81.38 39.3 59.6 3.5 
 y 4 295 Mica 0 2 13 2.9133 82.26 20.9 28.4 2.8 
22 Ti (31) y 4 727 Si 4 0 0a 2.7153 75.01 77.2 206.7 11.0 
 y 4 727 Mica 2 0 12 2.6940 76.81 54.0 126.6 8.4 
 w 4 750 Mica 2 0 12 2.6940 75.67 48.6 124.1 10.0 
23 V (2) y 5 180 Quartz 2 2 1 2.3954 87.7 133.6 53.7 0.2 
 y 5 180 Mica 3 3 9 2.3946 88.26 157.3 47.8 0.1 
24 Cr (58) y 5 655 Si 4 2 2a 2.2171 81.46 142.4 213.8 3.4 
 w 5 682 Si 4 2 2a 2.2171 79.8 115.0 206.8 4.9 
 y 5 655 Mica 4 0 8 2.2157 81.69 77.8 113.7 3.2 
 w 5 682 Mica 4 0 8 2.2157 79.99 63.2 111.6 4.7 
25 Mn (69) y 6 151 InAs 5 3 1a 2.0405 81.05 87.9 138.5 3.7 
 w 6 181 InAs 5 3 1a 2.0405 79.43 73.2 136.7 5.3 
y 6 151 Quartz 2 1 4 2.0690 76.96 44.1 102.1 8.2 
 y 6 151 Quartz 2 2 3 2.0297 83.27 86.0 101.5 2.1 
 w 6 181 Quartz 2 1 4 2.0690 75.81 40.0 101.0 9.7 
w 6 181 Quartz 2 2 3 2.0297 81.22 64.5 99.6 3.6 
26 Fe (103) y 6 668 Si 4 4 0a 1.9200 75.56 74.0 190.4 10.1 
 y 6 668 InAs 6 2 0a 1.9087 76.94 67.4 156.4 8.2 
 w 6 701 InAs 6 2 0a 1.9087 75.78 61.0 154.5 9.8 
27 Co (92) w 7 242 Si 6 2 0a 1.7173 85.49 256.7 202.5 0.9 
 y 7 206 GaAs 3 3 5a 1.7244 86.2 233.3 155.0 0.7 
 y 7 206 Ge 3 3 5a 1.7255 85.68 202.7 153.1 0.9 
 w 7 242 GaAs 3 3 5a 1.7244 83.14 125.2 150.6 2.2 
 w 7 242 Ge 3 3 5a 1.7255 82.84 118.6 149.0 2.4 
28 Ni (105) y 7 766 Ge 4 4 4 1.6331 77.84 85.4 184.1 7.0 
 y 7 766 GaAs 4 4 4 1.6321 78.01 86.7 184.1 6.8 
y 7 766 Quartz 5 0 2 1.6233 79.57 91.2 168.0 5.1 
29 Cu (131) y 8 347 Ge 2 4 6a 1.5120 79.23 98.0 186.4 5.5 
 y 8 347 GaAs 2 4 6a 1.5110 79.43 99.7 186.1 5.3 
 y 8 347 InAs 8 0 0a 1.509 79.85 60.96 109.1 14.8 
30 Zn (175) y 8 950 Ge 8 0 0a 1.4143 78.37 83.1 171.1 6.4 
 y 8 950 GaAs 8 0 0a 1.4134 78.55 84.1 170.4 6.2 
 w 8 999 Ge 7 3 3a 1.3823 85.35 130.2 105.9 1.0 
 w 8 999 GaAs 7 3 3a 1.3814 85.83 144.3 105.2 0.8 
31 Ga (198) y 9 575 Ge 6 6 0,a8 2 2a 1.3335 76.18 58.6 144.2 9.2 
 y 9 575 GaAs 6 6 0,a8 2 2a 1.3326 76.34 58.4 142.0 9.0 
 y 9 575 Ge 1 5 7,a5 5 5 1.3065 82.35 64.0 86.0 2.7 
 y 9 575 GaAs 1 5 7,a5 5 5 1.3057 82.63 66.2 85.7 2.5 
32 Ge (262) w 10 280 Ge 6 6 4a 1.2062 89.35 1084.1 123.0 0.0 
 y 10 221 InAs 8 4 4a 1.2321 79.91 50.5 89.8 4.8 
 y 10 221 Si 8 4 0a 1.2143 87.34 161.5 75.0 0.3 
 w 10 280 Si 8 4 0a 1.2143 83.31 62.1 72.9 2.1 
33 As (219) y 10 889 Ge 8 4 4a 1.1548 80.4 39.1 66.2 4.3 
 y 10 889 Si 6 6 4a 1.1578 79.55 30.5 56.3 5.1 
 y 10 889 InAs 7 7 3a 1.1670 77.33 23.3 52.5 7.7 
 y 10 889 Quartz 5 3 3 1.1519 81.3 23.6 36.2 3.5 
 y 10 889 Quartz 0 5 7 1.1436 84.65 38.5 36.1 1.3 
34 Se (237) w 11 652 InAs 8 8 0a 1.0670 85.73 87.0 64.9 0.8 
 y 11 579 InAs 10 4 2a 1.1020 76.32 26.6 64.8 9.0 
 w 11 652 InAs 11 1 1a 1.0885 77.84 20.0 43.1 7.0 
 w 11 652 Si 10 2 0,a8 6 2 1.0651 87.53 92.8 40.0 0.3 
35 Br (305) w 12 372 InAs 8 8 4a12 0 0a 1.0060 84.98 37.5 33.0 1.2 
 y 12 292 InAs 3 7 9a 1.0239 80.09 14.7 25.6 4.6 
 w 12 372 Quartz 3 5 6 1.0077 83.98 19.0 20.0 1.7 
36 Kr (335) y 13 026 InAs 12 4 0a 0.9544 85.8 43.2 31.7 0.8 
 w 13 114 InAs 9 9 1a 0.9456 89.1 150.8 23.7 0.0 
 y 13 026 Quartz 5 5 0 0.9826 75.62 9.2 23.6 10.0 
 y 13 026 Si 8 8 0a 0.9600 82.51 16.9 22.2 2.6 
37 Rb (427) y 13 783 InAs 12 4 4a 0.9100 81.32 18.9 28.8 3.5 
 y 13 783 InAs 9 7 7a 0.9023 85.52 26.1 20.5 0.9 
 y 13 783 Si 8 8 4,a12 0 0 0.9051 83.64 14.6 16.3 5.7 
39 Y (387) y 15 364 InAs 14 4 2,a12 6 6,a10 10 4a 0.8214 79.25 12.2 23.2 5.5 
 w 15 482 InAs 12 8 4a 0.8066 83.15 19.1 22.9 2.2 
 y 15 364 InAs 13 5 5a 0.8157 81.59 10.6 15.6 3.3 
40 Zr (487) y 16 189 InAs 14 6 4,a12 10 2a 0.7666 87.52 48.0 20.8 0.3 
 y 16 189 InAs 14 6 0a 0.7926 75.08 7.7 20.5 10.8 
 w 16 318 InAs 14 6 4,a12 10 2a 0.7666 82.38 15.2 20.3 2.7 
41 Nb (475) w 17 036 InAs 16 4 0,a12 8 8a 0.7320 83.87 16.9 18.2 1.7 
 w 17 036 InAs 16 2 2,a14 8 2,a10 10 8a 0.7430 78.39 8.8 18.2 6.4 
 y 17 178 InAs 13 9 5a15 7 1a 0.7280 82.51 8.6 11.35 7.9 
42 Mo (537) w 17 907 InAs 16 6 2,a14 10 0,a14 8 6a 0.7017 80.67 9.7 15.9 4.1 
 y 18 062 InAs 16 6 2,a14 10 0 ,a14 8 6a 0.7017 78.04 7.3 15.5 6.8 
 y 18 062 InAs 12 12 4a 0.6924 82.49 11.7 15.5 2.6 
43 Tc (623) w 18 800 InAs 16 8 0a 0.6748 77.75 6.3 13.8 7.2 
 w 18 800 InAs 18 2 0,a16 6 6a 0.6666 81.65 9.3 13.7 3.2 
 y 18 971 InAs 16 8 0a 0.6748 75.57 5.2 13.4 10.1 
 y 18 971 InAs 18 2 0,a16 6 6a 0.6666 78.66 6.7 13.4 6.1 
 y 18 971 InAs 16 8 4a 0.6586 82.91 10.7 13.3 2.3 
44 Ru (670) w 19 717 InAs 18 4 2,a14 12 2,a12 10 10a 0.6509 75.04 4.4 11.8 10.9 
 w 19 717 InAs 12 12 8a 0.6434 77.76 5.4 11.8 7.1 
 w 19 717 InAs 18 6 0,a16 10 2,a14 10 8a 0.6362 81.23 7.6 11.7 3.6 
45 Rh (703) w 20 658 InAs 16 8 8a 0.6160 76.96 4.3 10.0 8.2 
 w 20 658 InAs 18 8 2,a16 10 6,a14 14 0a 0.6097 79.84 5.6 10.0 4.9 
 w 20 658 InAs 20 0 0,a16 12 0a 0.6036 83.89 9.2 9.9 1.7 
46 Pd (759) w 21 622 InAs 20 4 0,a16 12 4a 0.5919 75.65 3.3 8.4 10.0 
 w 21 622 InAs 18 10 0,a18 8 6a 0.5863 77.98 3.9 8.4 6.9 
 w 21 622 InAs 20 4 4,a12 12 12 0.5808 80.85 5.2 8.3 3.9 
47 Ag (747) w 22 609 InAs 20 8 0,a16 12 8a 0.5604 78.1 3.3 6.9 6.7 
 w 22 609 InAs 20 6 6,a18 12 2a 0.5557 80.72 4.2 6.9 4.0 
 w 22 609 InAs 20 8 4a 0.5510 84.4 7.0 6.8 1.4 
48 Cd (762) w 23 621 InAs 20 10 2,a18 12 6a 0.5377 77.45 2.6 5.7 7.5 
 w 23 621 GaAs 20 8 0,a16 12 8a 0.5249 89.29 45.7 5.7 0.0 
 w 23 621 InAs 16 16 0a 0.5335 79.69 3.1 5.7 5.0 
 w 23 621 InAs 20 8 8,a16 16 4a 0.5254 87.55 13.1 5.6 0.3 
49 In (590) w 24 657 Ge 20 8 4a 0.5164 76.82 2.1 4.9 8.3 
 w 24 657 Ge 18 10 8,a16 14 6a 0.5122 79.03 2.5 4.8 5.7 
 w 24 657 GaAs 20 6 6,a18 12 2a 0.5205 75.04 1.8 4.8 10.9 
50 Sn (588) w 25 717 GaAs 18 14 0a 0.4959 76.48 1.7 4.2 8.8 
 w 25 717 Ge 20 10 6,a18 14 4,a14 14 12a 0.4887 80.57 2.5 4.2 4.2 
 w 25 717 Ge 16 12 12,a20 12 0a 0.4851 83.62 3.72 4.2 5.7 
a

Also any permutation of hkl.

TABLE VII.

Backlighter combinations for Kα emission lines, with ϑ ≥ 75°. The number in brackets next to the element name is the count of identified matches for this element. * highlights combinations that have been used in an application. The x-ray energy is given in eV, 2d spacing in Å, Bragg angle ϑ in degrees, Rint in μrad, Rint/tan ϑ × 107, and spatial resolution σ in μm. For calculations of Rint, we assume spherical crystals with 250  mm radius of curvature and 70 μm thickness. X-rays are unpolarized and the temperature factor was set to 0.8. The spatial resolution was calculated using Eq. (9), assuming a 300-μm-diameter source. Eq. (9) also determines the Bragg angle range of ϑ ≥ 75° by requiring that σ ≤ 10 μm. Since Kα2 is close to Kα1, only results for Kα1 are shown, however most combinations will work with Kα2 as well. If more than three possible matching combinations are found only the top three to six matches (in cases where the top matches have low Bragg angles) are shown for clarity. A spreadsheet containing all identified combinations can be found in the supplementary material to this article.

ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
12 Mg (2) Kα1 1 253.7 Mica 0 0 4 10.0075 81.19 72.6 112.5 3.6 
13 Al (6) Kα1 1 486.7 Quartz 0 1 0 8.5096 78.53 161.2 327.0 6.2 
 Kα1 1 486.7 Quartz 1 0 0 8.5096 78.53 161.2 327.0 6.2 
14 Si (2) Kα1 1 740 Mica 1 1 3 7.1839 82.69 7.6 9.8 2.5 
15 P (2) Kα1 2 013.7 Si 1 1 1 6.2708 79.07 229.1 442.4 5.6 
17 Cl (4) Kα1 2 622.4 Mica 1 3 3 4.7621 83.12 77.9 93.9 2.2 
18 Ar (18) Kα1 2 957.7 InAs 2 2 0a 4.2681 79.16 593.7 1136.9 5.6 
 Kα1 2 957.7 Quartz 0 2 0,2 0 0 4.2548 80.14 73.3 127.4 4.6 
 Kα1 2 957.7 Mica 1 3 5 4.2658 79.32 66.2 124.9 5.4 
19 K (12) Kα1 3 313.9 Si 2 2 0a 3.8401 76.98 177.2 409.9 8.1 
 Kα1 3 313.9 Mica 1 3 7 3.7581 84.58 23.5 22.3 1.4 
20 Ca (28) Kα1 3 691.7 Ge 3 1 1a 3.4115 79.88 260.0 464.1 4.8 
 Kα1 3 691.7 GaAs 3 1 1a 3.4093 80.09 257.0 448.9 4.6 
 Kα1 3 691.7 Mica 2 0 8 3.4428 77.29 17.9 40.3 7.7 
21 Sc (20) Kα1 4 090.6 Mica 2 0 10 3.0348 87.13 237.8 119.2 0.4 
 Kα1 4 090.6 Quartz 1 2 1 3.0828 79.48 64.1 119.0 5.2 
 Kα1 4 090.6 Quartz 2 1 1 3.0828 79.48 60.1 111.6 5.2 
22 Ti (36) Kα1 4 510.8 Ge 4 0 0a 2.8287 76.33 198.8 483.4 9.0 
 Kα1 4 510.8 GaAs 4 0 0a 2.8268 76.49 200.5 481.8 8.8 
Kα1 4 510.8 Quartz 2 0 3 2.7496 88.43 881.0 241.5 0.1 
 Kα1 4 510.8 InAs 3 3 1a 2.7695 82.96 117.8 145.4 2.3 
 Kα1 4 510.8 Quartz 1 2 2 2.7639 83.96 133.2 141.0 1.7 
23 V (1) Kα1 4 952.2 Mica 1 1 15 2.5046 88.4 2.5 0.7 0.1 
24 Cr (57) Kα1 5 414.7 Ge 4 2 2a 2.3096 82.49 234.2 308.8 2.6 
 Kα1 5 414.7 GaAs 4 2 2a 2.3081 82.77 242.9 308.2 2.4 
 Kα1 5 414.7 InAs 3 3 3 2.3233 80.26 107.5 184.5 4.5 
25 Mn (53) Kα1 5 898.8 InAs 4 4 0a 2.1340 80.04 118.0 207.3 4.7 
 Kα1 5 898.8 Quartz 1 3 2 2.1629 76.35 51.2 124.3 9.0 
 Kα1 5 898.8 Mica 1 3 17 2.1084 85.47 108.2 85.7 0.9 
26 Fe (83) Kα1 6 403.8 Ge 4 4 0a 2.0002 75.46 80.0 207.5 10.3 
 Kα1 6 403.8 GaAs 4 4 0a 1.9989 75.6 80.7 207.2 10.1 
 Kα1 6 403.8 Quartz 1 1 5 1.9788 78.08 33.5 70.7 6.8 
 Kα1 6 403.8 Quartz 2 3 0,3 2 0 1.9522 82.63 52.1 67.4 2.5 
27 Co (90) Kα1 6 930.3 Si 5 3 1a 1.8359 77.02 51.7 119.2 8.1 
 Kα1 6 930.3 Quartz 4 0 3 1.8319 77.58 49.3 108.6 7.4 
 Kα1 6 930.3 Quartz 4 1 1 1.8301 77.83 44.0 95.0 7.1 
 Kα1 6 930.3 Quartz 1 2 5 1.7942 85.64 101.7 77.6 0.9 
28 Ni (131) Kα1 7 478.2 Quartz 0 2 6 1.6590 87.99 450.5 158.1 0.2 
 Kα1 7 478.2 InAs 7 1 1a 1.6904 78.75 47.2 94.0 6.0 
 Kα1 7 478.2 InAs 5 5 1a 1.6904 78.75 35.7 71.1 6.0 
 Kα1 7 478.2 Mica 5 3 11 1.6635 85.3 61.0 50.2 1.0 
 Kα1 7 478.2 Quartz 2 0 6 1.6590 87.99 98.4 34.5 0.2 
29 Cu (139) Kα1 8 047.8 Si 4 4 4 1.5677 79.33 86.3 162.6 5.4 
 Kα1 8 047.8 Ge 7 1 1,a5 5 1a 1.5844 76.5 51.6 123.8 8.8 
 Kα1 8 047.8 Quartz 2 3 4 1.5825 76.79 45.8 107.5 8.4 
30 Zn (185) Kα1 8 638.9 Si 6 4 2a 1.4514 81.42 91.6 138.1 3.4 
 Kα1 8 638.9 GaAs 7 3 1a 1.4721 77.14 49.1 112.1 7.9 
 Kα1 8 638.9 Ge 7 3 1,a5 5 3a 1.4730 76.98 48.1 111.2 8.1 
 Kα1 8 638.9 GaAs 5 5 3a 1.4721 77.14 48.4 110.5 7.9 
 Kα1 8 638.9 Quartz 3 2 5 1.4489 82.11 70.6 97.9 2.9 
 Kα1 8 638.9 Quartz 0 5 4 1.4401 85.26 100.0 82.9 1.0 
31 Ga (180) Kα1 9 251.7 Si 8 0 0a 1.3577 80.78 68.8 111.7 4.0 
 Kα1 9 251.7 InAs 8 4 0a 1.3497 83.17 87.5 104.8 2.2 
 Kα1 9 251.7 Quartz 2 5 1 1.3519 82.42 48.1 64.0 2.7 
32 Ge (205) Kα1 9 886.4 Ge 8 4 0a 1.2650 82.46 103.6 137.2 2.6 
 Kα1 9 886.4 InAs 6 6 4a 1.2869 77.04 39.4 90.7 8.1 
 Kα1 9 886.4 Si 8 2 2,a6 6 0a 1.2800 78.45 44.1 90.2 6.3 
 Kα1 9 886.4 InAs 9 3 1a 1.2655 82.3 48.4 65.5 2.8 
33 As (273) Kα1 10 543.7 Ge 6 6 4a 1.2062 77.14 42.3 96.5 7.9 
 Kα1 10 543.7 InAs 10 2 0,a8 6 2a 1.1838 83.4 75.3 87.2 2.0 
 Kα1 10 543.7 Quartz 0 0 9 1.2010 78.26 31.7 66.0 6.5 
34 Se (306) Kα1 11 222.4 InAs 9 5 3a 1.1257 78.93 25.1 49.2 5.8 
 Kα1 11 222.4 Si 8 4 4a 1.1085 85.29 58.7 48.4 1.0 
 Kα1 11 222.4 Quartz 0 5 7 1.1436 75.03 12.0 32.2 10.9 
35 Br (311) Kα1 11 924.2 Si 10 2 0,a8 6 2a 1.0651 77.49 16.5 36.6 7.5 
 Kα1 11 924.2 InAs 11 3 1,a9 5 5a 1.0547 80.34 15.9 27.0 4.4 
 Kα1 11 924.2 Quartz 7 0 5 1.0596 78.89 10.8 21.3 5.8 
 Kα1 11 924.2 Si 9 5 1,a7 7 3a 1.0500 81.99 12.8 18.0 3.0 
36 Kr (315) Kα1 12 649 InAs 12 0 0,a8 8 4a 1.0060 76.99 13.9 32.0 8.1 
 Kα1 12 649 Quartz 5 5 0 0.9826 85.98 37.6 26.4 0.7 
 Kα1 12 649 Si 10 4 2a 0.9915 81.33 17.2 26.3 3.5 
37 Rb (382) Kα1 13 395.3 InAs 10 8 2a 0.9314 83.6 27.0 30.3 1.9 
 Kα1 13 395.3 Si 10 6 0,a8 6 6a 0.9314 83.61 17.1 19.2 1.9 
 Kα1 13 395.3 Ge 12 0 0,a8 8 4a 0.9429 79 8.1 15.8 5.7 
38 Sr (405) Kα1 14 165 InAs 12 6 2a 0.8900 79.58 14.9 27.4 5.1 
 Kα1 14 165 InAs 13 3 3,a9 9 5a 0.8828 82.52 14.6 19.2 2.6 
 Kα1 14 165 Si 12 0 0,a8 8 4a 0.9051 75.25 5.6 14.7 10.6 
39 Y (437) Kα1 14 958.4 InAs 12 8 0a 0.8370 81.98 17.5 24.7 3.0 
 Kα1 14 958.4 InAs 11 9 3a 0.8311 85.82 23.0 16.8 0.8 
 Kα1 14 958.4 Ge 12 6 2a 0.8341 83.56 12.2 13.7 1.9 
40 Zr (471) Kα1 15 775.1 InAs 14 6 0a 0.7926 82.59 16.9 22.0 2.5 
 Kα1 15 775.1 InAs 15 3 1a 0.7875 86.42 23.3 14.6 0.6 
 Kα1 15 775.1 Ge 14 2 0,a10 10 0,a10 8 6a 0.8001 79.22 6.6 12.7 5.5 
41 Nb (549) Kα1 16 615.1 InAs 16 0 0a 0.7545 81.5 13.0 19.4 3.4 
 Kα1 16 615.1 InAs 15 5 3a 0.7501 84.15 12.3 12.6 1.6 
 Kα1 16 615.1 Ge 12 8 4a 0.7560 80.77 7.2 11.8 4.0 
42 Mo (543) Kα1 17 479.3 InAs 16 4 4,a12 12 0a 0.7114 85.67 22.5 17.0 0.9 
 Kα1 17 479.3 InAs 12 10 6a 0.7214 79.48 9.2 17.0 5.2 
 Kα1 17 479.3 Ge 14 6 4,a12 10 2a 0.7185 80.84 6.7 10.9 3.9 
43 Tc (614) Kα1 18 367.2 InAs 14 10 4a 0.6834 81 9.3 14.7 3.8 
 Kα1 18 367.2 Ge 12 10 6a 0.6762 86.66 17.3 10.1 0.5 
 Kα1 18 367.2 GaAs 12 10 6a 0.6757 87.36 21.8 10.1 0.3 
44 Ru (663) Kα1 19 279.2 InAs 12 12 8a 0.6434 88.13 39.0 12.7 0.2 
 Kα1 19 279.2 InAs 18 4 2,a14 12 2,a12 10 10a 0.6509 81.13 8.1 12.7 3.7 
 Kα1 19 279.2 Ge 12 12 4a 0.6489 82.31 6.8 9.1 2.7 
45 Rh (641) Kα1 20 216.1 InAs 18 6 4,a14 12 6a 0.6226 80.1 6.2 10.8 4.6 
 Kα1 20 216.1 InAs 16 8 8a 0.6160 84.58 11.3 10.7 1.4 
 Kα1 20 216.1 GaAs 16 8 4a 0.6169 83.83 7.7 8.3 1.8 
46 Pd (706) Kα1 21 177.1 InAs 20 2 2,a14 14 4a 0.5977 78.41 4.4 9.1 6.4 
 Kα1 21 177.1 InAs 18 10 0,a18 8 6a 0.5863 86.99 17.2 9.0 0.4 
 Kα1 21 177.1 InAs 20 4 0,a16 12 4a 0.5919 81.56 6.1 9.0 3.3 
47 Ag (728) Kα1 22 162.9 InAs 16 14 2,a16 10 10,a14 14 8a 0.5653 81.72 5.1 7.5 3.2 
 Kα1 22 162.9 InAs 20 8 0,a16 12 8a 0.5604 86.56 12.4 7.5 0.5 
 Kα1 22 162.9 Ge 20 2 2,a14 14 4a 0.5602 87.06 13.0 6.7 0.4 
48 Cd (731) Kα1 23 173.99 InAs 18 10 8,a16 14 6a 0.5465 78.25 3.0 6.2 6.6 
 Kα1 23 173.99 InAs 20 10 2,a18 12 6a 0.5377 84.24 6.1 6.1 1.5 
 Kα1 23 173.99 Ge 20 6 2,a18 10 4,a14 12 10a 0.5394 82.68 4.6 5.9 2.5 
49 In (753) Kα1 24 209.75 Ge 18 10 8,a16 14 6a 0.5122 89.09 32.5 5.2 ¡0.1 
 Kα1 24 209.75 Ge 20 6 6,a18 12 2a 0.5208 79.53 2.8 5.1 5.2 
 Kα1 24 209.75 Ge 20 8 0,a16 12 8a 0.5253 77.16 2.3 5.1 7.9 
50 Sn (570) Kα1 25 271.4 GaAs 20 10 2,a18 12 6a 0.5037 76.92 1.9 4.4 8.2 
 Kα1 25 271.4 Ge 16 16 0a 0.5000 78.86 2.3 4.4 5.9 
 Kα1 25 271.4 Ge 18 14 0a 0.4962 81.41 2.9 4.4 3.4 
ElementLineEnergyCrystalhkl2dϑRintRinttanϑσ
12 Mg (2) Kα1 1 253.7 Mica 0 0 4 10.0075 81.19 72.6 112.5 3.6 
13 Al (6) Kα1 1 486.7 Quartz 0 1 0 8.5096 78.53 161.2 327.0 6.2 
 Kα1 1 486.7 Quartz 1 0 0 8.5096 78.53 161.2 327.0 6.2 
14 Si (2) Kα1 1 740 Mica 1 1 3 7.1839 82.69 7.6 9.8 2.5 
15 P (2) Kα1 2 013.7 Si 1 1 1 6.2708 79.07 229.1 442.4 5.6 
17 Cl (4) Kα1 2 622.4 Mica 1 3 3 4.7621 83.12 77.9 93.9 2.2 
18 Ar (18) Kα1 2 957.7 InAs 2 2 0a 4.2681 79.16 593.7 1136.9 5.6 
 Kα1 2 957.7 Quartz 0 2 0,2 0 0 4.2548 80.14 73.3 127.4 4.6 
 Kα1 2 957.7 Mica 1 3 5 4.2658 79.32 66.2 124.9 5.4 
19 K (12) Kα1 3 313.9 Si 2 2 0a 3.8401 76.98 177.2 409.9 8.1 
 Kα1 3 313.9 Mica 1 3 7 3.7581 84.58 23.5 22.3 1.4 
20 Ca (28) Kα1 3 691.7 Ge 3 1 1a 3.4115 79.88 260.0 464.1 4.8 
 Kα1 3 691.7 GaAs 3 1 1a 3.4093 80.09 257.0 448.9 4.6 
 Kα1 3 691.7 Mica 2 0 8 3.4428 77.29 17.9 40.3 7.7 
21 Sc (20) Kα1 4 090.6 Mica 2 0 10 3.0348 87.13 237.8 119.2 0.4 
 Kα1 4 090.6 Quartz 1 2 1 3.0828 79.48 64.1 119.0 5.2 
 Kα1 4 090.6 Quartz 2 1 1 3.0828 79.48 60.1 111.6 5.2 
22 Ti (36) Kα1 4 510.8 Ge 4 0 0a 2.8287 76.33 198.8 483.4 9.0 
 Kα1 4 510.8 GaAs 4 0 0a 2.8268 76.49 200.5 481.8 8.8 
Kα1 4 510.8 Quartz 2 0 3 2.7496 88.43 881.0 241.5 0.1 
 Kα1 4 510.8 InAs 3 3 1a 2.7695 82.96 117.8 145.4 2.3 
 Kα1 4 510.8 Quartz 1 2 2 2.7639 83.96 133.2 141.0 1.7 
23 V (1) Kα1 4 952.2 Mica 1 1 15 2.5046 88.4 2.5 0.7 0.1 
24 Cr (57) Kα1 5 414.7 Ge 4 2 2a 2.3096 82.49 234.2 308.8 2.6 
 Kα1 5 414.7 GaAs 4 2 2a 2.3081 82.77 242.9 308.2 2.4 
 Kα1 5 414.7 InAs 3 3 3 2.3233 80.26 107.5 184.5 4.5 
25 Mn (53) Kα1 5 898.8 InAs 4 4 0a 2.1340 80.04 118.0 207.3 4.7 
 Kα1 5 898.8 Quartz 1 3 2 2.1629 76.35 51.2 124.3 9.0 
 Kα1 5 898.8 Mica 1 3 17 2.1084 85.47 108.2 85.7 0.9 
26 Fe (83) Kα1 6 403.8 Ge 4 4 0a 2.0002 75.46 80.0 207.5 10.3 
 Kα1 6 403.8 GaAs 4 4 0a 1.9989 75.6 80.7 207.2 10.1 
 Kα1 6 403.8 Quartz 1 1 5 1.9788 78.08 33.5 70.7 6.8 
 Kα1 6 403.8 Quartz 2 3 0,3 2 0 1.9522 82.63 52.1 67.4 2.5 
27 Co (90) Kα1 6 930.3 Si 5 3 1a 1.8359 77.02 51.7 119.2 8.1 
 Kα1 6 930.3 Quartz 4 0 3 1.8319 77.58 49.3 108.6 7.4 
 Kα1 6 930.3 Quartz 4 1 1 1.8301 77.83 44.0 95.0 7.1 
 Kα1 6 930.3 Quartz 1 2 5 1.7942 85.64 101.7 77.6 0.9 
28 Ni (131) Kα1 7 478.2 Quartz 0 2 6 1.6590 87.99 450.5 158.1 0.2 
 Kα1 7 478.2 InAs 7 1 1a 1.6904 78.75 47.2 94.0 6.0 
 Kα1 7 478.2 InAs 5 5 1a 1.6904 78.75 35.7 71.1 6.0 
 Kα1 7 478.2 Mica 5 3 11 1.6635 85.3 61.0 50.2 1.0 
 Kα1 7 478.2 Quartz 2 0 6 1.6590 87.99 98.4 34.5 0.2 
29 Cu (139) Kα1 8 047.8 Si 4 4 4 1.5677 79.33 86.3 162.6 5.4 
 Kα1 8 047.8 Ge 7 1 1,a5 5 1a 1.5844 76.5 51.6 123.8 8.8 
 Kα1 8 047.8 Quartz 2 3 4 1.5825 76.79 45.8 107.5 8.4 
30 Zn (185) Kα1 8 638.9 Si 6 4 2a 1.4514 81.42 91.6 138.1 3.4 
 Kα1 8 638.9 GaAs 7 3 1a 1.4721 77.14 49.1 112.1 7.9 
 Kα1 8 638.9 Ge 7 3 1,a5 5 3a 1.4730 76.98 48.1 111.2 8.1 
 Kα1 8 638.9 GaAs 5 5 3a 1.4721 77.14 48.4 110.5 7.9 
 Kα1 8 638.9 Quartz 3 2 5 1.4489 82.11 70.6 97.9 2.9 
 Kα1 8 638.9 Quartz 0 5 4 1.4401 85.26 100.0 82.9 1.0 
31 Ga (180) Kα1 9 251.7 Si 8 0 0a 1.3577 80.78 68.8 111.7 4.0 
 Kα1 9 251.7 InAs 8 4 0a 1.3497 83.17 87.5 104.8 2.2 
 Kα1 9 251.7 Quartz 2 5 1 1.3519 82.42 48.1 64.0 2.7 
32 Ge (205) Kα1 9 886.4 Ge 8 4 0a 1.2650 82.46 103.6 137.2 2.6 
 Kα1 9 886.4 InAs 6 6 4a 1.2869 77.04 39.4 90.7 8.1 
 Kα1 9 886.4 Si 8 2 2,a6 6 0a 1.2800 78.45 44.1 90.2 6.3 
 Kα1 9 886.4 InAs 9 3 1a 1.2655 82.3 48.4 65.5 2.8 
33 As (273) Kα1 10 543.7 Ge 6 6 4a 1.2062 77.14 42.3 96.5 7.9 
 Kα1 10 543.7 InAs 10 2 0,a8 6 2a 1.1838 83.4 75.3 87.2 2.0 
 Kα1 10 543.7 Quartz 0 0 9 1.2010 78.26 31.7 66.0 6.5 
34 Se (306) Kα1 11 222.4 InAs 9 5 3a 1.1257 78.93 25.1 49.2 5.8 
 Kα1 11 222.4 Si 8 4 4a 1.1085 85.29 58.7 48.4 1.0 
 Kα1 11 222.4 Quartz 0 5 7 1.1436 75.03 12.0 32.2 10.9 
35 Br (311) Kα1 11 924.2 Si 10 2 0,a8 6 2a 1.0651 77.49 16.5 36.6 7.5 
 Kα1 11 924.2 InAs 11 3 1,a9 5 5a 1.0547 80.34 15.9 27.0 4.4 
 Kα1 11 924.2 Quartz 7 0 5 1.0596 78.89 10.8 21.3 5.8 
 Kα1 11 924.2 Si 9 5 1,a7 7 3a 1.0500 81.99 12.8 18.0 3.0 
36 Kr (315) Kα1 12 649 InAs 12 0 0,a8 8 4a 1.0060 76.99 13.9 32.0 8.1 
 Kα1 12 649 Quartz 5 5 0 0.9826 85.98 37.6 26.4 0.7 
 Kα1 12 649 Si 10 4 2a 0.9915 81.33 17.2 26.3 3.5 
37 Rb (382) Kα1 13 395.3 InAs 10 8 2a 0.9314 83.6 27.0 30.3 1.9 
 Kα1 13 395.3 Si 10 6 0,a8 6 6a 0.9314 83.61 17.1 19.2 1.9 
 Kα1 13 395.3 Ge 12 0 0,a8 8 4a 0.9429 79 8.1 15.8 5.7 
38 Sr (405) Kα1 14 165 InAs 12 6 2a 0.8900 79.58 14.9 27.4 5.1 
 Kα1 14 165 InAs 13 3 3,a9 9 5a 0.8828 82.52 14.6 19.2 2.6 
 Kα1 14 165 Si 12 0 0,a8 8 4a 0.9051 75.25 5.6 14.7 10.6 
39 Y (437) Kα1 14 958.4 InAs 12 8 0a 0.8370 81.98 17.5 24.7 3.0 
 Kα1 14 958.4 InAs 11 9 3a 0.8311 85.82 23.0 16.8 0.8 
 Kα1 14 958.4 Ge 12 6 2a 0.8341 83.56 12.2 13.7 1.9 
40 Zr (471) Kα1 15 775.1 InAs 14 6 0a 0.7926 82.59 16.9 22.0 2.5 
 Kα1 15 775.1 InAs 15 3 1a 0.7875 86.42 23.3 14.6 0.6 
 Kα1 15 775.1 Ge 14 2 0,a10 10 0,a10 8 6a 0.8001 79.22 6.6 12.7 5.5 
41 Nb (549) Kα1 16 615.1 InAs 16 0 0a 0.7545 81.5 13.0 19.4 3.4 
 Kα1 16 615.1 InAs 15 5 3a 0.7501 84.15 12.3 12.6 1.6 
 Kα1 16 615.1 Ge 12 8 4a 0.7560 80.77 7.2 11.8 4.0 
42 Mo (543) Kα1 17 479.3 InAs 16 4 4,a12 12 0a 0.7114 85.67 22.5 17.0 0.9 
 Kα1 17 479.3 InAs 12 10 6a 0.7214 79.48 9.2 17.0 5.2 
 Kα1 17 479.3 Ge 14 6 4,a12 10 2a 0.7185 80.84 6.7 10.9 3.9 
43 Tc (614) Kα1 18 367.2 InAs 14 10 4a 0.6834 81 9.3 14.7 3.8 
 Kα1 18 367.2 Ge 12 10 6a 0.6762 86.66 17.3 10.1 0.5 
 Kα1 18 367.2 GaAs 12 10 6a 0.6757 87.36 21.8 10.1 0.3 
44 Ru (663) Kα1 19 279.2 InAs 12 12 8a 0.6434 88.13 39.0 12.7 0.2 
 Kα1 19 279.2 InAs 18 4 2,a14 12 2,a12 10 10a 0.6509 81.13 8.1 12.7 3.7 
 Kα1 19 279.2 Ge 12 12 4a 0.6489 82.31 6.8 9.1 2.7 
45 Rh (641) Kα1 20 216.1 InAs 18 6 4,a14 12 6a 0.6226 80.1 6.2 10.8 4.6 
 Kα1 20 216.1 InAs 16 8 8a 0.6160 84.58 11.3 10.7 1.4 
 Kα1 20 216.1 GaAs 16 8 4a 0.6169 83.83 7.7 8.3 1.8 
46 Pd (706) Kα1 21 177.1 InAs 20 2 2,a14 14 4a 0.5977 78.41 4.4 9.1 6.4 
 Kα1 21 177.1 InAs 18 10 0,a18 8 6a 0.5863 86.99 17.2 9.0 0.4 
 Kα1 21 177.1 InAs 20 4 0,a16 12 4a 0.5919 81.56 6.1 9.0 3.3 
47 Ag (728) Kα1 22 162.9 InAs 16 14 2,a16 10 10,a14 14 8a 0.5653 81.72 5.1 7.5 3.2 
 Kα1 22 162.9 InAs 20 8 0,a16 12 8a 0.5604 86.56 12.4 7.5 0.5 
 Kα1 22 162.9 Ge 20 2 2,a14 14 4a 0.5602 87.06 13.0 6.7 0.4 
48 Cd (731) Kα1 23 173.99 InAs 18 10 8,a16 14 6a 0.5465 78.25 3.0 6.2 6.6 
 Kα1 23 173.99 InAs 20 10 2,a18 12 6a 0.5377 84.24 6.1 6.1 1.5 
 Kα1 23 173.99 Ge 20 6 2,a18 10 4,a14 12 10a 0.5394 82.68 4.6 5.9 2.5 
49 In (753) Kα1 24 209.75 Ge 18 10 8,a16 14 6a 0.5122 89.09 32.5 5.2 ¡0.1 
 Kα1 24 209.75 Ge 20 6 6,a18 12 2a 0.5208 79.53 2.8 5.1 5.2 
 Kα1 24 209.75 Ge 20 8 0,a16 12 8a 0.5253 77.16 2.3 5.1 7.9 
50 Sn (570) Kα1 25 271.4 GaAs 20 10 2,a18 12 6a 0.5037 76.92 1.9 4.4 8.2 
 Kα1 25 271.4 Ge 16 16 0a 0.5000 78.86 2.3 4.4 5.9 
 Kα1 25 271.4 Ge 18 14 0a 0.4962 81.41 2.9 4.4 3.4 
a

Also any permutation of hkl.

1.
S. A.
Pikuz
,
T. A.
Shelkovenko
,
V. M.
Romanova
,
D. A.
Hammer
,
A. Ya.
Faenov
,
V. A.
Dyakin
, and
T. A.
Pikuz
, “
Monochromatic x-ray probing of an ultradense plasma
,”
J. Exp. Theor. Phys. Lett.
61
(
8
),
638
(
1995
), available at http://www.jetpletters.ac.ru/ps/1207/article_18242.shtml.
2.
M. K.
Matzen
,
M. A.
Sweeney
,
R. G.
Adams
,
J. R.
Asay
,
J. E.
Bailey
,
G. R.
Bennett
,
D. E.
Bliss
,
D. D.
Bloomquist
,
T. A.
Brunner
,
R. B.
Campbell
,
G. A.
Chandler
,
C. A.
Coverdale
,
M. E.
Cuneo
,
J.-P.
Davis
,
C.
Deeney
,
M. P.
Desjarlais
,
G. L.
Donovan
,
C. J.
Garasi
,
T. A.
Haill
,
C. A.
Hall
,
D. L.
Hanson
,
M. J.
Hurst
,
B.
Jones
,
M. D.
Knudson
,
R. J.
Leeper
,
R. W.
Lemke
,
M. G.
Mazarakis
,
D. H.
Mcdaniel
,
T. A.
Mehlhorn
,
T. J.
Nash
,
C. L.
Olson
,
J. L.
Porter
,
P. K.
Rambo
,
S. E.
Rosenthal
,
G. A.
Rochau
,
L. E.
Ruggles
,
C. L.
Ruiz
,
T. W. L.
Sanford
,
J. F.
Seamen
,
D. B.
Sinars
,
S. A.
Slutz
,
I. C.
Smith
,
K. W.
Struve
,
W. A.
Stygar
,
R. A.
Vesey
,
E. A.
Weinbrecht
,
D. F.
Wenger
, and
E. P.
Yu
, “
Pulsed-power-driven high energy density physics and inertial confinement fusion research
,”
Phys. Plasmas
12
,
055503
(
2005
).
3.
M. E.
Cuneo
,
M. C.
Herrmann
,
D. B.
Sinars
,
S. A.
Slutz
,
W. A.
Stygar
,
R. A.
Vesey
,
A. B.
Sefkow
,
G. A.
Rochau
,
G. A.
Chandler
,
J. E.
Bailey
,
J. L.
Porter
,
R. D.
McBride
,
D. C.
Rovang
,
M. G.
Mazarakis
,
E. P.
Yu
,
D. C.
Lamppa
,
K. J.
Peterson
,
C.
Nakhleh
,
S. B.
Hansen
,
A. J.
Lopez
,
M. E.
Savage
,
C. A.
Jennings
,
M. R.
Martin
,
R. W.
Lemke
,
B. W.
Atherton
,
I. C.
Smith
,
P. K.
Rambo
,
M.
Jones
,
M. R.
Lopez
,
P. J.
Christenson
,
M. A.
Sweeney
,
B.
Jones
,
L. A.
McPherson
,
E.
Harding
,
M. R.
Gomez
,
P. F.
Knapp
,
T. J.
Awe
,
R. J.
Leeper
,
C. L.
Ruiz
,
G. W.
Cooper
,
K. D.
Hahn
,
J.
McKenney
,
A. C.
Owen
,
G. R.
Mckee
,
G. T.
Leifeste
,
D. J.
Ampleford
,
E. M.
Waisman
,
A.
Harvey-Thompson
,
R. J.
Kaye
,
M. H.
Hess
,
S. E.
Rosenthal
, and
M. K.
Matzen
, “
Magnetically driven implosions for inertial confinement fusion at Sandia national laboratories
,”
IEEE Trans. Plasma Sci.
40
,
3222
3245
(
2012
).
4.
T. J.
Awe
,
R. D.
McBride
,
C. A.
Jennings
,
D. C.
Lamppa
,
M. R.
Martin
,
D. C.
Rovang
,
S. A.
Slutz
,
M. E.
Cuneo
,
A. C.
Owen
,
D. B.
Sinars
,
K.
Tomlinson
,
M. R.
Gomez
,
S. B.
Hansen
,
M. C.
Herrmann
,
J. L.
Mckenney
,
C.
Nakhleh
,
G. K.
Robertson
,
G. A.
Rochau
,
M. E.
Savage
,
D. G.
Schroen
, and
W. A.
Stygar
, “
Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field.
,”
Phys. Rev. Lett.
111
,
235005
(
2013
).
5.
G. N.
Hall
,
G. C.
Burdiak
,
L.
Suttle
,
N. H.
Stuart
,
G. F.
Swadling
,
S. V.
Lebedev
,
R. A.
Smith
,
S.
Patankar
,
F.
Suzuki-Vidal
,
P.
De Grouchy
,
A. J.
Harvey-Thompson
,
M.
Bennett
,
S. N.
Bland
,
L.
Pickworth
, and
J.
Skidmore
, “
Monochromatic radiography of high energy density physics experiments on the MAGPIE generator
,”
Rev. Sci. Instrum.
85
,
11D608
(
2014
).
6.
M. R.
Gomez
,
S. A.
Slutz
,
A. B.
Sefkow
,
K. D.
Hahn
,
S. B.
Hansen
,
P. F.
Knapp
,
P. F.
Schmit
,
C. L.
Ruiz
,
D. B.
Sinars
,
E. C.
Harding
,
C. A.
Jennings
,
T. J.
Awe
,
M.
Geissel
,
D. C.
Rovang
,
I. C.
Smith
,
G. A.
Chandler
,
G. W.
Cooper
,
M. E.
Cuneo
,
A. J.
Harvey-Thompson
,
M. C.
Herrmann
,
M. H.
Hess
,
D. C.
Lamppa
,
M. R.
Martin
,
R. D.
McBride
,
K. J.
Peterson
,
J. L.
Porter
,
G. A.
Rochau
,
M. E.
Savage
,
D. G.
Schroen
,
W. A.
Stygar
, and
R. A.
Vesey
, “
Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments
,”
Phys. Plasmas
22
,
056306
(
2015
).
7.
T. J.
Awe
,
K. J.
Peterson
,
E. P.
Yu
,
R. D.
McBride
,
D. B.
Sinars
,
M. R.
Gomez
,
C. A.
Jennings
,
M. R.
Martin
,
S. E.
Rosenthal
,
D. G.
Schroen
,
A. B.
Sefkow
,
S. A.
Slutz
,
K.
Tomlinson
, and
R. A.
Vesey
, “
Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners
,”
Phys. Rev. Lett.
116
,
065001
(
2016
).
8.
J. A.
Koch
,
Y.
Aglitskiy
,
C.
Brown
,
T.
Cowan
,
R.
Freeman
,
S.
Hatchett
,
G.
Holland
,
M.
Key
,
A.
MacKinnon
,
J.
Seely
,
R.
Snavely
, and
R.
Stephens
, “
4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals (invited)
,”
Rev. Sci. Instrum.
74
,
2130
2135
(
2003
).
9.
R. B.
Stephens
,
R. A.
Snavely
,
Y.
Aglitskiy
,
F.
Amiranoff
,
C.
Andersen
,
D.
Batani
,
S. D.
Baton
,
T.
Cowan
,
R. R.
Freeman
,
T.
Hall
,
S. P.
Hatchett
,
J. M.
Hill
,
M. H.
Key
,
J. A.
King
,
J. A.
Koch
,
M.
Koenig
,
A. J.
MacKinnon
,
K. L.
Lancaster
,
E.
Martinolli
,
P.
Norreys
,
E.
Perelli-Cippo
,
M. R.
Le Gloahec
,
C.
Rousseaux
,
J. J.
Santos
, and
F.
Scianitti
, “
Ka fluorescence measurement of relativistic electron transport in the context of fast ignition
,”
Phys. Rev. E
69
,
066414
(
2004
).
10.
S. D.
Baton
,
M.
Koenig
,
P.
Guillou
,
B.
Loupias
,
A.
Benuzzi-Mounaix
,
J.
Fuchs
,
C.
Rousseaux
,
L.
Gremillet
,
D.
Batani
,
A.
Morace
,
M.
Nakatsutsumi
,
R.
Kodama
, and
Y.
Aglitskiy
, “
Relativistic electron transport and confinement within charge-insulated, mass-limited targets
,”
High Energy Density Phys.
3
,
358
(
2007
).
11.
J. A.
King
,
K. U.
Akli
,
R. R.
Freeman
,
J.
Green
,
S. P.
Hatchett
,
D.
Hey
,
P.
Jamangi
,
M. H.
Key
,
J.
Koch
,
K. L.
Lancaster
,
T.
Ma
,
A. J.
MacKinnon
,
A.
MacPhee
,
P. A.
Norreys
,
P. K.
Patel
,
T.
Phillips
,
R. B.
Stephens
,
W.
Theobald
,
R. P. J.
Town
,
L.
van Woerkom
,
B.
Zhang
, and
F. N.
Beg
, “
Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets
,”
Phys. Plasmas
16
,
020701
(
2009
).
12.
C.
Stoeckl
,
G.
Fiksel
,
D.
Guy
,
C.
Mileham
,
P. M.
Nilson
,
T. C.
Sangster
,
M. J.
Shoup
, and
W.
Theobald
, “
A spherical crystal imager for OMEGA EP
,”
Rev. Sci. Instrum.
83
,
033107
(
2012
).
13.
L.
Willingale
,
A. G. R.
Thomas
,
A.
Maksimchuk
,
A.
Morace
,
T.
Bartal
,
J.
Kim
,
R. B.
Stephens
,
M. S.
Wei
,
F. N.
Beg
, and
K.
Krushelnick
, “
Investigation of relativistic intensity laser generated hot electron dynamics via copper Kα imaging and proton acceleration
,”
Phys. Plasmas
20
,
123112
(
2013
).
14.
S.
Chawla
,
M.
Wei
,
R.
Mishra
,
K.
Akli
,
C.
Chen
,
H.
McLean
,
A.
Morace
,
P.
Patel
,
H.
Sawada
,
Y.
Sentoku
,
R.
Stephens
, and
F.
Beg
, “
Effect of target material on fast-electron transport and resistive collimation
,”
Phys. Rev. Lett.
110
,
025001
(
2013
).
15.
M.
Storm
,
B.
Eichman
,
C.
Orban
,
S.
Jiang
,
G.
Fiksel
,
C.
Stoeckl
,
G.
Dyer
,
T.
Ditmire
,
R.
Stephens
,
W.
Theobald
,
J. A.
Delettrez
,
R. R.
Freeman
, and
K.
Akli
, “
Kα x-ray imaging of laser-irradiated, limited-mass zirconium foils
,”
Phys. Plasmas
21
,
072704
(
2014
).
16.
Y.
Aglitskiy
,
T.
Lehecka
,
S.
Obenschain
,
C.
Pawley
,
C. M.
Brown
, and
J.
Seely
, “
X-ray crystal imagers for inertial confinement fusion experiments (invited)
,”
Rev. Sci. Instrum.
70
,
530
535
(
1999
).
17.
I.
Uschmann
,
K.
Fujita
,
I.
Niki
,
R.
Butzbach
,
H.
Nishimura
,
J.
Funakura
,
M.
Nakai
,
E.
Förster
, and
K.
Mima
, “
Time-resolved ten-channel monochromatic imaging of inertial confinement fusion plasmas
,”
Appl. Opt.
39
,
5865
5871
(
2000
).
18.
K.
Fujita
,
H.
Nishimura
,
I.
Niki
,
J.
Funakura
,
I.
Uschmann
,
R.
Butzbach
,
E.
Förster
,
M.
Nakai
,
M.
Fukao
,
A.
Sunahara
,
H.
Takabe
, and
T.
Yamanaka
, “
Monochromatic x-ray imaging with bent crystals for laser fusion research
,”
Rev. Sci. Instrum.
72
,
744
(
2001
).
19.
C.
Stoeckl
,
M.
Bedzyk
,
G.
Brent
,
R.
Epstein
,
G.
Fiksel
,
D.
Guy
,
V. N.
Goncharov
,
S. X.
Hu
,
S.
Ingraham
,
D. W.
Jacobs-Perkins
,
R. K.
Jungquist
,
F. J.
Marshall
,
C.
Mileham
,
P. M.
Nilson
,
T. C.
Sangster
,
M. J.
Shoup
III
, and
W.
Theobald
, “
Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)
,”
Rev. Sci. Instrum.
85
,
11E501
(
2014
).
20.
W.
Theobald
,
A. A.
Solodov
,
C.
Stoeckl
,
K. S.
Anderson
,
F. N.
Beg
,
R.
Epstein
,
G.
Fiksel
,
E. M.
Giraldez
,
V. Y.
Glebov
,
H.
Habara
,
S.
Ivancic
,
L. C.
Jarrott
,
F. J.
Marshall
,
G.
McKiernan
,
H. S.
McLean
,
C.
Mileham
,
P. M.
Nilson
,
P. K.
Patel
,
F.
Perez
,
T. C.
Sangster
,
J. J.
Santos
,
H.
Sawada
,
A.
Shvydky
,
R. B.
Stephens
, and
M. S.
Wei
, “
Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion
,”
Nat. Commun.
5
,
5785
(
2014
).
21.
H.
Sawada
,
S.
Fujioka
,
T.
Hosoda
,
Z.
Zhang
,
Y.
Arikawa
,
H.
Nagatomo
,
H.
Nishimura
,
A.
Sunahara
,
W.
Theobald
,
P. K.
Patel
, and
F. N.
Beg
, “
Development of 4.5 keV monochromatic X-ray radiography using the high-energy, picosecond LFEX laser
,”
J. Phys.: Conf. Ser.
717
,
012112
(
2016
).
22.
J. A.
Koch
,
O. L.
Landen
,
T. W.
Barbee
,
P.
Celliers
,
L. B.
Da Silva
,
S. G.
Glendinning
,
B. A.
Hammel
,
D. H.
Kalantar
,
C.
Brown
, and
J.
Seely
, “
High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility
,”
Appl. Opt.
37
,
1784
1795
(
1998
).
23.
D. B.
Sinars
,
G. R.
Bennett
,
D. F.
Wenger
,
M. E.
Cuneo
, and
J. L.
Porter
, “
Evaluation of bent-crystal x-ray backlighting and microscopy techniques for the Sandia Z machine
,”
Appl. Opt.
42
,
4059
4071
(
2003
).
24.
M. S.
Schollmeier
,
M.
Geissel
,
J. E.
Shores
,
I. C.
Smith
, and
J. L.
Porter
, “
Performance of bent-crystal x-ray microscopes for high energy density physics research
,”
Appl. Opt.
54
,
5147
5161
(
2015
).
25.
E.
Förster
,
K.
Gäbel
, and
I.
Uschmann
, “
X-ray microscopy of laser-produced plasmas with the use of bent crystals
,”
Laser Part. Beams
9
,
135
148
(
1991
).
26.
T.
Missalla
,
I.
Uschmann
,
E.
Förster
,
G.
Jenke
, and
D.
von der Linde
, “
Monochromatic focusing of subpicosecond x-ray pulses in the keV range
,”
Rev. Sci. Instrum.
70
,
1288
1299
(
1999
).
27.
M.
Sánchez del Rio
,
L.
Alianelli
,
T. A.
Pikuz
, and
A. Y.
Faenov
, “
A novel imaging x-ray microscope based on a spherical crystal
,”
Rev. Sci. Instrum.
72
,
3291
(
2001
).
28.
T. A.
Pikuz
,
A. Y.
Faenov
,
M.
Fraenkel
,
A.
Zigler
,
F.
Flora
,
S.
Bollanti
,
P.
Di Lazzaro
,
T.
Letardi
,
A.
Grilli
,
L.
Palladino
,
G.
Tomasetti
,
A.
Reale
,
L.
Reale
,
A.
Scafati
,
T.
Limongi
,
F.
Bonfigli
,
L.
Alainelli
, and
M.
Sánchez del Rio
, “
Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability
,”
Laser Part. Beams
19
,
285
293
(
2001
).
29.
A. Y.
Faenov
,
T. A.
Pikuz
,
V.
Avrutin
,
N.
Izyumskaya
,
L.
Shabelnikov
,
E.
Shulakov
, and
G. A.
Kyrala
, “
Hard x-ray imaging using free-standing spherically bent crystals
,”
Rev. Sci. Instrum.
74
,
2224
(
2003
).
30.
M. S. d.
Rio
,
D.
Bianchi
,
T. A.
Pikuz
,
A. Y.
Faenov
,
S. A.
Pikuz
, Jr.
,
L.
Delgado-Aparicio
,
N.
Pablant
,
M.
Bitter
, and
K.
Hill
, “
Stigmatic X-ray imaging using a single spherical Laue crystal
,”
J. Phys.: Conf. Ser.
425
,
192021
(
2013
).
31.
B.
Loupias
,
F.
Perez
,
A.
Benuzzi-Mounaix
,
N.
Ozaki
,
M.
Rabec
,
L. E.
Gloahec
,
T. A.
Pikuz
,
A. Y.
Faenov
,
Y.
Aglitskiy
, and
M.
Koenig
, “
Highly efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states
,”
Laser Part. Beams
27
,
601
(
2009
).
32.
J. A.
Koch
,
O. L.
Landen
,
B. A.
Hammel
,
C.
Brown
,
J.
Seely
, and
Y.
Aglitskiy
, “
Recent progress in high-energy, high-resolution x-ray imaging techniques for application to the National Ignition Facility
,”
Rev. Sci. Instrum.
70
,
525
529
(
1999
).
33.
M.
Fraenkel
,
A.
Zigler
,
A. Y.
Faenov
, and
T. A.
Pikuz
, “
Large-field high resolution X-ray monochromatic microscope, based on spherical crystal and high-repetition-rate femtosecond laser-produced plasma
,”
Phys. Scr.
59
,
246
(
1999
).
34.
Y.
Aglitskiy
,
T.
Lehecka
,
S.
Obenschain
,
S.
Bodner
,
C.
Pawley
,
K.
Gerber
,
J.
Sethian
,
C. M.
Brown
,
J.
Seely
,
U.
Feldman
, and
G.
Holland
, “
High-resolution monochromatic x-ray imaging system based on spherically bent crystals
,”
Appl. Opt.
37
,
5253
5261
(
1998
).
35.
S. A.
Pikuz
,
T. A.
Shelkovenko
,
V. M.
Romanova
,
D. A.
Hammer
,
A. Y.
Faenov
,
V. A.
Dyakin
, and
T. A.
Pikuz
, “
High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas (invited)
,”
Rev. Sci. Instrum.
68
,
740
744
(
1997
).
36.
N. L.
Kugland
,
T.
Döppner
,
A.
Kemp
,
D.
Schaeffer
,
S. H.
Glenzer
, and
C.
Niemann
, “
Mapping the ionization state of laser-irradiated Ar gas jets with multiwavelength monochromatic x-ray imaging
,”
Rev. Sci. Instrum.
81
,
10E526
(
2010
).
37.
M. R.
Gomez
,
S. A.
Slutz
,
A. B.
Sefkow
,
D. B.
Sinars
,
K. D.
Hahn
,
S. B.
Hansen
,
E. C.
Harding
,
P. F.
Knapp
,
P. F.
Schmit
,
C. A.
Jennings
,
T. J.
Awe
,
M.
Geissel
,
D. C.
Rovang
,
G. A.
Chandler
,
G. W.
Cooper
,
M. E.
Cuneo
,
A. J.
Harvey-Thompson
,
M. C.
Herrmann
,
M. H.
Hess
,
O.
Johns
,
D. C.
Lamppa
,
M. R.
Martin
,
R. D.
McBride
,
K. J.
Peterson
,
J. L.
Porter
,
G. K.
Robertson
,
G. A.
Rochau
,
C. L.
Ruiz
,
M. E.
Savage
,
I. C.
Smith
,
W. A.
Stygar
, and
R. A.
Vesey
, “
Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion
,”
Phys. Rev. Lett.
113
,
155003
(
2014
).
38.
G. R.
Bennett
,
D. B.
Sinars
,
D. F.
Wenger
,
M. E.
Cuneo
,
R. G.
Adams
,
W. J.
Barnard
,
D. E.
Beutler
,
R. A.
Burr
,
D. V.
Campbell
,
L. D.
Claus
,
J. S.
Foresi
,
D. W.
Johnson
,
K. L.
Keller
,
C.
Lackey
,
G. T.
Leifeste
,
L. A.
McPherson
,
T. D.
Mulville
,
K. A.
Neely
,
P. K.
Rambo
,
D. C.
Rovang
,
L. E.
Ruggles
,
J. L.
Porter
,
W. W.
Simpson
,
I. C.
Smith
, and
C. S.
Speas
, “
High-brightness, high-spatial-resolution, 6.151 keV x-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia’s Z accelerator (invited)
,”
Rev. Sci. Instrum.
77
,
10E322
(
2006
).
39.
D. B.
Sinars
,
G. R.
Bennett
,
M. C.
Herrmann
,
I. C.
Smith
,
C. S.
Speas
,
L. E.
Ruggles
, and
J. L.
Porter
, “
Enhancement of x-ray yield from the Z-Beamlet laser for monochromatic backlighting by using a prepulse
,”
Rev. Sci. Instrum.
77
,
10E309
(
2006
).
40.
K. U.
Akli
,
M. S.
del Rio
,
S.
Jiang
,
M. S.
Storm
,
A.
Krygier
,
R. B.
Stephens
,
N. R.
Pereira
,
E. O.
Baronova
,
W.
Theobald
,
Y.
Ping
,
H. S.
McLean
,
P. K.
Patel
,
M. H.
Key
, and
R. R.
Freeman
, “
A novel zirconium Kα imager for high energy density physics research
,”
Rev. Sci. Instrum.
82
,
123503
(
2011
).
41.
J. A.
Koch
,
J. J.
Lee
, and
M. J.
Haugh
, “
High Miller-index germanium crystals for high-energy x-ray imaging applications
,”
Appl. Opt.
54
,
10227
10231
(
2015
).
42.
L. M.
Belyaev
,
A. B.
Gil’varg
,
Yu. A.
Mikhaĭlov
,
S. A.
Pikuz
,
G. V.
Sklizkov
,
A. Y.
Faenov
, and
S. I.
Fedotov
, “
X-ray photography of laser plasmas with the aid of analyzer crystals bent to form second-order surfaces
,”
Sov. J. Quantum Electron.
6
,
1121
1122
(
1976
).
43.
J. A.
Koch
,
Imaging Crystal/Spectral Line Search, Technical Report UCRL-ID-129951
(
Lawrence Livermore National Laboratory
, Livermore, CA, USA,
1998
).
44.
Y.
Aglitskiy
,
M.
Karasik
,
A. L.
Velikovich
,
V.
Serlin
,
J. L.
Weaver
,
T. J.
Kessler
,
S. P.
Nikitin
,
A. J.
Schmitt
,
S. P.
Obenschain
,
N.
Metzler
, and
J.
Oh
, “
Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target
,”
Phys. Plasmas
19
,
102707
(
2012
).
45.
U.
Zastrau
,
L. B.
Fletcher
,
E.
Förster
,
E. C.
Galtier
,
E.
Gamboa
,
S. H.
Glenzer
,
P.
Heimann
,
H.
Marschner
,
B.
Nagler
,
A.
Schropp
,
O.
Wehrhan
, and
H. J.
Lee
, “
Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser
,”
Rev. Sci. Instrum.
85
,
093106
(
2014
).
46.
M.
Geissel
,
I. C.
Smith
,
J. E.
Shores
, and
J. L.
Porter
, “
Dynamic granularity of imaging systems
,”
Rev. Sci. Instrum.
86
,
113701
(
2015
).
47.
I.
Uschmann
,
E.
Förster
,
H.
Nishimura
,
K.
Fujita
,
Y.
Kato
, and
S.
Nakai
, “
Temperature mapping of compressed fusion pellets obtained by monochromatic imaging
,”
Rev. Sci. Instrum.
66
,
734
736
(
1995
).
48.
B. L.
Henke
,
E. M.
Gullikson
, and
J. C.
Davis
, “
X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30 000 eV, Z = 1-92
,”
At. Data Nucl. Data Tables
54
,
181
342
(
1993
).
49.
M. S.
del Río
and
R. J.
Dejus
, “
XOP v2. 4: Recent developments of the x-ray optics software toolkit
,”
Proc. SPIE
8141
,
814115
(
2011
).
50.
E. C.
Harding
,
T.
Ao
,
J. E.
Bailey
,
G.
Loisel
,
D. B.
Sinars
,
M.
Geissel
,
G. A.
Rochau
, and
I. C.
Smith
, “
Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments
,”
Rev. Sci. Instrum.
86
,
043504
(
2015
).
51.
A.
Thompson
,
D. T.
Attwood
,
E.
Gullikson
, and
M.
Howells
,
X-ray Data Booklet
, 3rd ed. (
Lawrence Berkeley National Laboratory
,
Berkeley, CA
,
2009
), http://xdb.lbl.gov.
52.
R. D.
Deslattes
,
E. G.
Kessler
,
P.
Indelicato
,
L.
de Billy
,
E.
Lindroth
, and
J.
Anton
, “
X-ray transition energies: New approach to a comprehensive evaluation
,”
Rev. Mod. Phys.
75
,
35
99
(
2003
).
53.
M.
Sanchez del Rio
,
C.
Ferrero
, and
V.
Mocella
, “
Computer simulation of bent perfect crystal diffraction profiles
,”
Proc. SPIE
3151
,
312
323
(
1997
).
54.
M.
Sánchez del Rio
,
N.
Perez-Bocanegra
,
X.
Shi
,
V.
Honkimaki
, and
L.
Zhang
, “
Simulation of X-ray diffraction profiles for bent anisotropic crystals
,”
J. Appl. Crystallogr.
48
,
477
491
(
2015
).
55.
M.
Sánchez del Rio
,
L.
Alianelli
,
A. Y.
Faenov
, and
T.
Pikuz
, “
X-ray reflectivity of curved alpha-quartz crystals
,”
Phys. Scr.
69
,
297
(
2004
).
56.
G. P.
Loisel
,
M.
Wu
,
W.
Stolte
,
C.
Kruschwitz
,
P.
Lake
,
G. S.
Dunham
,
J. E.
Bailey
, and
G. A.
Rochau
, “
Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)
,”
Rev. Sci. Instrum.
87
,
11D502
(
2016
).
57.
M.
Storm
,
B.
Eichman
,
Z.
Zhong
,
W.
Theobald
,
P.
Schiebel
,
C.
Mileham
,
C.
Stoeckl
,
I. A.
Begishev
,
G.
Fiksel
,
R. B.
Stephens
,
R. R.
Freeman
, and
K. U.
Akli
, “
Note: Characterization of a high-photon-energy X-ray imager
,”
Rev. Sci. Instrum.
84
,
106103
(
2013
).
58.
A. H.
Gabriel
, “
Dielectronic satellite spectra for highly-charged helium-like ion lines
,”
Mon. Not. R. Astron. Soc.
160
,
99
119
(
1972
).

Supplementary Material