This work presents a hyperspectral imager sensitive to radiation in the 1250–666 cm−1 wavenumber range (wavelengths between 8 and 15 μm). The system combines a low-order scanning Fabry–Pérot interferometer with a thermal camera utilizing a 1024 × 768-pixel uncooled microbolometer detector. The compact interferometer design enables a relatively small footprint, providing a spectral resolution between 26 and 39 cm−1, depending on the wavenumber. Transmission measurements of various substances are shown to produce distinct interferograms, facilitating material identification. In addition, a generalized matrix method is used to estimate the relationship between physical cavity length and wavenumber of the incident light, enabling the prediction of interferogram shapes.

1.
S. M.
Safavi
et al, “
Sorting of polypropylene resins by color in MSW using visible reflectance spectroscopy
,”
Waste Manage.
30
,
2216
(
2010
).
2.
M. L.
Henriksen
et al, “
Plastic classification via in-line hyperspectral camera analysis and unsupervised machine learning
,”
Vib. Spectrosc.
118
,
103329
(
2022
).
3.
M.
Ghaffari
et al, “
Systematic reduction of hyperspectral images for high-throughput plastic characterization
,”
Sci. Rep.
13
,
21591
(
2023
).
4.
G.
Bonifazi
et al, “
Fast and effective classification of plastic waste by pushbroom hyperspectral sensor coupled with hierarchical modelling and variable selection
,”
Resour., Conserv. Recycl.
197
,
107068
(
2023
).
5.
E. A.
Holman
,
D. R.
Holman
, and
S.
Rogalla
, “
Expanding hyperspectral imaging applications to the clinical scene: Non-invasive, label-free approaches for early diagnostics and precision medicine
,”
Front. Imaging
2
,
1175860
(
2023
).
6.
G.
Lu
and
B.
Fei
, “
Medical hyperspectral imaging: A review
,”
J. Biomed. Opt.
19
,
010901
(
2014
).
7.
A.
ul Rehman
and
S. A.
Qureshi
, “
A review of the medical hyperspectral imaging systems and unmixing algorithms’ in biological tissues
,”
Photodiagn. Photodyn. Ther.
33
,
102165
(
2021
).
8.
B.
Lu
,
P.
Dao
,
J.
Liu
,
Y.
He
, and
J.
Shang
, “
Recent advances of hyperspectral imaging technology and applications in agriculture
,”
Remote Sens.
12
,
2659
(
2020
).
9.
S.
Thomas
et al, “
Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective
,”
J. Plant Dis. Prot.
125
,
5
(
2018
).
10.
D.
Patel
,
S.
Bhise
,
S. S.
Kapdi
, and
T.
Bhatt
, “
Non-destructive hyperspectral imaging technology to assess the quality and safety of food: A review
,”
Food Prod., Process. Nutr.
6
(
1
),
69
(
2024
).
11.
D.
Ye
,
L.
Sun
,
W.
Tan
,
W.
Che
, and
M.
Yang
, “
Detecting and classifying minor bruised potato based on hyperspectral imaging
,”
Chemom. Intell. Lab. Syst.
177
,
129
139
(
2018
).
12.
S. J.
Ramos-Infante
,
V.
Suarez-Rubio
,
P.
Luri-Esplandiu
, and
M. J.
Saiz-Abajo
, “
Assessment of tomato quality characteristics using VIS/NIR hyperspectral imaging and chemometrics
,” in
2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
(
IEEE
,
Amsterdam, Netherlands
,
2019
), pp.
1
5
.
13.
M.
Huang
,
M. S.
Kim
,
S. R.
Delwiche
,
K.
Chao
,
J.
Qin
,
C.
Mo
,
C.
Esquerre
, and
Q.
Zhu
, “
Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio
,”
J. Food Eng.
181
,
10
19
(
2016
).
14.
Miko. Specim FX120. Specim, https://www.specim.com/products/specim-fx120/ (accessed 18 September 2024).
15.
Hyperspectral Cameras - Telops Hyper-Cam & HC Airborne Mini. Telops, https://www.telops.com/products/hyperspectral-cameras/ (accessed 18 September 2024).
You do not currently have access to this content.