The RF-based single-driver negative hydrogen ion source test bed ROBIN is a 100 kW, 1 MHz negative hydrogen ion source test bed at IPR, Gandhinagar. The inductive RF coupling produces plasma in the driver, expanding into an expansion chamber coupled to a three-grid extractor accelerator system. A magnetic filter field, transverse to the plasma flow direction from the RF driver, is produced magnetically using magnet boxes fitted in the diagnostic flange, also called filter field flange. The diagnostic flange is located between the exit of the expansion chamber and the entry to the three-grid system consisting of a plasma grid (PG), extraction grid, and grounded grid. The filter field in conjunction with the bias voltage of a few tens of volts applied to the plasma grid with respect to the source body has a strong influence on the control of plasma electrons, plasma drifts, and plasma confinement, which, in turn, influence plasma uniformity, and so beam profile uniformity, beam divergence, and beam transmission. The present design of ITER sources also envisages magnets lined along the expansion chamber for plasma confinement. Their effectiveness on operations is an important aspect of studies, being performed on fusion-relevant negative ion test beds globally. A systematic study on similar lines has been carried out on the ROBIN test bed and is reported in this paper. The magnets are arranged in boxes and fitted on the walls of the ROBIN expansion chamber extending up to the diagnostic flange. Several magnetic configurations, line and cusp arrangements, have been studied. Significant effects on plasma uniformity across the ion extraction plane in front of the PG are observed. As a consequence, the ratio of co-extracted electron current to negative hydrogen ion (H ion) current in terms of their current densities (je−/jion) is also influenced by the magnetic configurations. The findings presented here may be relevant for achieving improved H uniformity along the extraction plane, thereby helping in improved beam divergence and reduced transport losses from larger sources.

1.
R. S.
Hemsworth
,
D.
Boilson
,
P.
Blatchford
,
M. D.
Palma
,
G.
Chitarin
,
H. P. L.
de Esch
,
F.
Geli
,
M.
Dremel
,
J.
Graceffa
,
D.
Marcuzzi
,
G.
Serianni
,
D.
Shah
,
M.
Singh
,
M.
Urbani
, and
P.
Zaccaria
, “
Overview of the design of the ITER heating neutral beam injectors
,”
New J. Phys.
19
,
025005
(
2017
).
2.
A.
Chakraborty
,
C.
Rotti
,
M.
Bandyopadhyay
,
M. J.
Singh
,
R.
Gangadharan Nair
,
S.
Shah
,
U. K.
Baruah
,
R. s.
Hemsworth
, and
B.
Schunke
, “
Diagnostic neutral beam for ITER—Concept to engineering
,”
IEEE Trans. Plasma Sci.
38
(
3
),
248
(
2010
).
3.
E.
Speth
,
H. D.
Falter
,
P.
Franzen
,
U.
Fantz
,
M.
Bandyopadhyay
,
S.
Christ
,
A.
Encheva
,
M.
Fröschle
,
D.
Holtum
,
B.
Heinemann
,
W.
Kraus
,
A.
Lorenz
,
C.
Martens
,
P.
McNeely
,
S.
Obermayer
,
R.
Riedl
,
R.
Süss
,
A.
Tanga
,
R.
Wilhelm
, and
D.
Wünderlich
, “
Overview of the RF source development programme at IPP Garching
,”
Nucl. Fusion
46
,
S220
(
2006
).
4.
W.
Kraus
,
B.
Heinemann
,
H. D.
Falter
,
P.
Franzen
,
E.
Speth
,
A.
Entscheva
,
U.
Fantz
,
T.
Franke
,
D.
Holtum
,
C.
Martens
,
P.
McNeely
,
R.
Riedl
, and
R.
Wilhelm
, “
RF-source development for ITER: Large area H beam extraction, modifications for long pulse operation and design of a half size ITER source
,”
Fusion Eng. Des.
74
,
337
341
(
2005
).
5.
U.
Fantz
,
F.
Bonomo
,
M.
Fröschle
,
B.
Heinemann
,
A.
Hurlbatt
,
W.
Kraus
,
L.
Schiesko
,
R.
Nocentini
,
R.
Riedl
, and
C.
Wimmer
, “
Advanced NBI beam characterization capabilities at the recently improved test facility BATMAN Upgrade
,”
Fusion Eng. Des.
146
(
Part A
),
212
215
(
2019
).
6.
P.
Franzen
,
H.
Falter
,
B.
Heinemann
,
C.
Martens
,
U.
Fantz
,
M.
Berger
,
S.
Christ-Koch
,
M.
Fröschle
,
D.
Holtum
,
W.
Kraus
,
S.
Leyer
,
P.
McNeely
,
R.
Riedl
,
R.
Süss
,
S.
Obermayer
,
E.
Speth
, and
D.
Wünderlich
, “
RADI—A RF source size-scaling experiment towards the ITER neutral beam negative ion source
,”
Fusion Eng. Des.
82
,
407
423
(
2007
).
7.
B.
Heinemann
,
U.
Fantz
,
P.
Franzen
,
M.
Froeschle
,
M.
Kircher
,
W.
Kraus
,
C.
Martens
,
R.
Nocentini
,
R.
Riedl
,
B.
Ruf
,
L.
Schiesko
,
C.
Wimmer
, and
D.
Wuenderlich
, “
Negative ion test facility ELISE—Status and first results
,”
Fusion Eng. Des.
88
(
6–8
),
512
516
(
2013
).
8.
D.
Wünderlich
,
R.
Riedl
,
I.
Mario
,
A.
Mimo
,
U.
Fantz
,
B.
Heinemann
, and
W.
Kraus
, “
Formation of large negative deuterium ion beams at ELISE
,”
Rev. Sci. Instrum.
90
,
113304
(
2019
).
9.
V.
Toigo
,
S.
Dal Bello
,
E.
Gaio
,
A.
Luchetta
,
R.
Pasqualotto
,
P.
Zaccaria
,
M.
Bigi
,
G.
Chitarin
,
D.
Marcuzzi
,
N.
Pomaro
et al, “
The ITER neutral beam test facility towards SPIDER operation
,”
Nucl. Fusion
57
,
086027
(
2017
).
10.
V.
Toigo
,
R.
Piovan
,
S. D.
Bello
,
E.
Gaio
,
A.
Luchetta
,
R.
Pasqualotto
,
P.
Zaccaria
,
M.
Bigi
,
G.
Chitarin
,
D.
Marcuzzi
,
N.
Pomaro
et al, “
The PRIMA test facility: SPIDER and MITICA test-beds for ITER neutral beam injectors
,”
New J. Phys.
19
,
085004
(
2017
).
11.
M.
Hanada
,
T.
Seki
,
N.
Takado
,
T.
Inoue
,
H.
Tobari
,
T.
Mizuno
,
A.
Hatayama
,
M.
Dairaku
,
M.
Kashiwagi
,
K.
Sakamoto
,
M.
Taniguchi
, and
K.
Watanabe
, “
Improvement of beam uniformity by magnetic filter optimization in a Cs-seeded large negative-ion source
,”
Rev. Sci. Instrum.
77
,
03A515
(
2006
).
12.
D.
Wunderlich
,
R.
Gutser
,
U.
Fantz
, and
NNBI Team
, “
Influence of magnetic fields and biasing on the plasma of a RF driven negative ion source
,”
AIP Conf. Proc.
925
,
46
(
2007
).
13.
W.
Kraus
,
U.
Fantz
,
B.
Heinemann
, and
D.
Wünderlich
, “
Concepts of magnetic filter fields in powerful negative ion sources for fusion
,”
Rev. Sci. Instrum.
87
,
02B315
(
2016
).
14.
D.
Wünderlich
,
I. M.
Montellano
,
M.
Lindqvist
,
A.
Mimo
,
S.
Mochalskyy
, and
U.
Fantz
, “
Effects of the magnetic field topology on the co-extracted electron current in a negative ion source for fusion
,”
J. Appl. Phys.
130
,
053303
(
2021
).
15.
L.
Schiesko
,
P.
McNeely
,
P.
Franzen
,
U.
Fantz
, and
NNBI Team
, “
Magnetic field dependence of the plasma properties in a negative hydrogen ion source for fusion
,”
Plasma Phys. Control. Fusion
54
,
105002
(
2012
).
16.
M.
Barbisan
,
U.
Fantz
, and
D.
Wünderlich
, “
Influence of the magnetic filter field topology on the beam divergence at the ELISE test facility
,”
AIP Conf. Proc.
1869
,
030030
(
2017
).
17.
M.
Fröschle
,
U.
Fantz
,
P.
Franzen
,
W.
Kraus
,
R.
Nocentini
,
L.
Schiesko
,
D.
Wünderlich
, and
NNBI Team
, “
Magnetic filter field for ELISE—Concepts and design
,”
Fusion Eng. Des.
88
,
1015
1019
(
2013
).
18.
U. P.
Franzen
,
U.
Fantz
, and
NNBI Team
, “
Beam homogeneity dependence on the magnetic filter field at the IPP test facility MANIT
,”
AIP Conf. Proc.
1390
,
310
321
(
2011
).
19.
A.
Fukano
and
M.
Ogasawara
, “
Electron transport across magnetic filter in negative hydrogen ion source
,”
Jpn. J. Appl. Phys.
40
,
7072
7076
(
2001
).
20.
M.
Hanada
,
M.
Kashiwagi
,
T.
Morishita
,
M.
Taniguchi
,
Y.
Okumura
,
T.
Takayanagi
, and
K.
Watanabe
, “
Development of negative ion sources for the ITER neutral beam injector
,”
Fusion Eng. Des.
56–57
,
505
(
2001
).
21.
P.
Veltri
,
N.
Den Harder
,
U.
Fantz
,
B.
Heinemann
,
J.
Hiratsuka
,
A.
Hurlbatt
,
M.
Kashiwagi
,
M.
Kisaki
,
A.
Pimazzoni
,
G. Q.
Saquilayan
,
E.
Sartori
,
G.
Serianni
,
K.
Tsumori
,
J.
Zacks
, and
Experiment Advisory Committee Contributors
, “
Towards low divergence beams for the ITER neutral beam injection system
,” in
8th International Symposium on Negative Ion Beams And Sources (NIBS)
,
2022
.
22.
H.
Nakano
,
K.
Tsumori
,
K.
Nagaoka
,
K.
Takahashi
,
K.
Ikeda
,
Y.
Takeiri
,
E.
Rattanawongnara
,
M.
Osakabe
,
W.
Kraus
, and
P.
Veltri
, “
Basic research on negative ion source for fusion using FA, RF and hybrid ion sources
,” in
7th Asia-Pacific Conference on Plasma Physics, 12–17 Nov, 2023 at Port Messe Nagoya
,
2023
.
23.
M. J.
Singh
,
M.
Bandyopadhyay
,
G.
Bansal
,
A.
Gahlaut
,
J.
Soni
,
S.
Kumar
,
K.
Pandya
,
K. G.
Parmar
,
J.
Sonara
,
R.
Yadav
,
A. K.
Chakraborty
,
W.
Kraus
,
B.
Heinemann
,
R.
Riedl
,
S.
Obermayer
,
C.
Martens
,
P.
Franzen
, and
U.
Fantz
, “
RF—Plasma source commissioning in Indian negative ion facility
,”
AIP Conf. Pro.
1390
,
604
613
(
2011
).
24.
G.
Bansal
,
A.
Gahlaut
,
J.
Soni
,
K.
Pandya
,
K. G.
Parmar
,
R.
Pandey
,
M.
Vuppugalla
,
B.
Prajapati
,
A.
Patel
,
H.
Mistery
,
A.
Chakraborty
,
M.
Bandyopadhyay
,
M. J.
Singh
,
A.
Phukan
,
R. K.
Yadav
, and
D.
Parmar
, “
Negative ion beam extraction in ROBIN
,”
Fusion Eng. Des.
88
(
6–8
),
778
782
(
2013
).
25.
A.
Gahlaut
,
R. K.
Yadav
,
M.
Bhuyan
,
M.
Bandyopadhyay
,
B. K.
Das
,
P.
Bharathi
,
M.
Vupugalla
,
K. G.
Parmar
,
H.
Tyagi
,
K.
Patel
,
J.
Bhagora
,
H.
Mistri
,
B.
Prajapati
,
R.
Pandey
, and
A. K.
Chakraborty
, “
First results from negative ion beam extraction in ROBIN in surface mode Kaushal Pandya
,”
AIP Conf. Proc.
1869
,
030009
(
2017
).
26.
M.
Bandyopadhyay
,
M. J.
Singh
,
K.
Pandya
,
M.
Bhuyan
,
H.
Tyagi
,
P.
Bharathi
,
S.
Shah
, and
A. K.
Chakraborty
, “
Overview of diagnostics on a small-scale RF source for fusion (ROBIN) and the one planned for the diagnostic beam for ITER
,”
Rev. Sci. Instrum.
93
,
023504
(
2022
).
27.
H.
Tobari
,
M.
Hanada
,
M.
Kashiwagi
,
M.
Taniguchi
,
N.
Umeda
,
K.
Watanabe
,
T.
Inoue
,
K.
Sakamoto
, and
N.
Takado
, “
Uniform H ion beam extraction in a large negative ion source with a tent-shaped magnetic filter
,”
Rev. Sci. Instrum.
79
,
02C111
(
2008
).
28.
P.
Franzen
,
L.
Schiesko
,
M.
Fröschle
,
D.
Wünderlich
, and
U.
Fantz
, and
NNBI Team
, “
Magnetic filter field dependence of the performance of the RF driven IPP prototype source for negative hydrogen ions
,”
Plasma Phys. Control. Fusion
53
,
115006
(
2011
).
29.
K.
Pandya
,
M. J.
Singh
,
M.
Bhuyan
,
M.
Bandyopadhyay
,
H.
Tyagi
,
V.
Mahesh
,
A.
Gahlaut
,
K.
Patel
,
R. K.
Yadav
,
S.
Shah
,
B.
Prajapati
,
H.
Mistri
, and
A.
Chakraborty
, “
Source performance optimization in Cesiated mode in ROBIN
,”
J. Instrum.
19
,
C02020
(
2024
).
30.
U.
Fantz
and
D.
Wünderlich
, “
A novel diagnostic technique for H (D) densities in negative hydrogen ion sources
,”
New J. Phys.
8
,
301
(
2006
).
31.
S.
Dash
et al, “
Visible camera-based diagnostic to study negative ion beam profiles in ROBIN ion source
,”
J. Phys.: Conf. Ser.
2743
,
012074
(
2024
).
You do not currently have access to this content.