Rydberg atoms play a pivotal role in the fields of quantum simulation, quantum computing, and quantum sensing, in which the frequency locking and detuning of the laser used to excite the atoms to Rydberg states are crucial. Here, we introduce a novel frequency locking approach for Rydberg lasers at arbitrary frequencies using the Zeeman effect of both DC and AC magnetic fields. The DC magnetic field is used to shift the atomic energy levels, thus altering the frequency locking point, while the AC magnetic field is employed for Zeeman modulation to generate the error signal. This method also enables free tuning of the laser frequency within a sub-hundred MHz range by adjusting the DC magnetic field while maintaining frequency locking.

1.
J. A.
Sedlacek
,
A.
Schwettmann
,
H.
Kübler
,
R.
Löw
,
T.
Pfau
, and
J. P.
Shaffer
, “
Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
,”
Nat. Phys.
8
,
819
824
(
2012
).
2.
T. F.
Gallagher
,
Rydberg Atoms
,
Cambridge Monographs on Atomic, Molecular and Chemical Physics
(
Cambridge University Press
,
1994
).
3.
C. L.
Holloway
,
M. T.
Simons
,
M. D.
Kautz
,
A. H.
Haddab
,
J. A.
Gordon
, and
T. P.
Crowley
, “
A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides
,”
Appl. Phys. Lett.
113
,
094101
(
2018
).
4.
M.
Jing
,
Y.
Hu
,
J.
Ma
,
H.
Zhang
,
L.
Zhang
,
L.
Xiao
, and
S.
Jia
, “
Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy
,”
Nat. Phys.
16
,
911
915
(
2020
).
5.
F.-D.
Jia
,
X.-B.
Liu
,
J.
Mei
,
Y.-H.
Yu
,
H.-Y.
Zhang
,
Z.-Q.
Lin
,
H.-Y.
Dong
,
J.
Zhang
,
F.
Xie
, and
Z.-P.
Zhong
, “
Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field
,”
Phys. Rev. A
103
,
063113
(
2021
).
6.
X.
Liu
,
F.
Jia
,
H.
Zhang
,
J.
Mei
,
Y.
Yu
,
W.
Liang
,
J.
Zhang
,
F.
Xie
, and
Z.
Zhong
, “
Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry
,”
AIP Adv.
11
,
085127
(
2021
).
7.
J.-H.
Hao
,
F.-D.
Jia
,
Y.
Cui
,
Y.-H.
Wang
,
F.
Zhou
,
X.-B.
Liu
,
J.
Zhang
,
F.
Xie
,
J.-H.
Bai
,
J.-Q.
You
,
Y.
Wang
, and
Z.-P.
Zhong
, “
Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
,”
Chin. Phys. B
33
,
050702
(
2024
).
8.
S.
Schmidt-Eberle
,
Toptica Phase and Frequency Locking of Diode Lasers
(
TOPTICA Photonics AG
,
2024
).
9.
S. R.
Cohen
and
J. D.
Thompson
, “
Quantum computing with circular Rydberg atoms
,”
PRX Quantum
2
,
030322
(
2021
).
10.
J. T.
Wilson
,
S.
Saskin
,
Y.
Meng
,
S.
Ma
,
R.
Dilip
,
A. P.
Burgers
, and
J. D.
Thompson
, “
Trapping alkaline earth Rydberg atoms optical tweezer arrays
,”
Phys. Rev. Lett.
128
,
033201
(
2022
).
11.
R. W. P.
Drever
,
J. L.
Hall
,
F. V.
Kowalski
et al, “
Laser phase and frequency stabilization using an optical resonator
,”
Appl. Phys. B
31
,
97
105
(
1983
).
12.
C.
Salomon
,
D.
Hils
, and
J. L.
Hall
, “
Laser stabilization at the millihertz level
,”
J. Opt. Soc. Am. B
5
,
1576
1587
(
1988
).
13.
E. D.
Black
, “
An introduction to Pound–Drever–Hall laser frequency stabilization
,”
Am. J. Phys.
69
,
79
87
(
2001
).
14.
H.
Stoehr
,
F.
Mensing
,
J.
Helmcke
, and
U.
Sterr
, “
Diode laser with 1 Hz linewidth
,”
Opt. Lett.
31
,
736
738
(
2006
).
15.
S.
Hirata
,
T.
Akatsuka
,
Y.
Ohtake
, and
A.
Morinaga
, “
Sub-Hertz-linewidth diode laser stabilized to an ultralow-drift high-finesse optical cavity
,”
Appl. Phys. Express
7
,
022705
(
2014
).
16.
F.
Bertinetto
,
P.
Cordiale
,
G.
Galzerano
, and
E.
Bava
, “
Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method
,”
IEEE Trans. Instrum. Meas.
50
,
490
492
(
2001
).
17.
D. J.
McCarron
,
S. A.
King
, and
S. L.
Cornish
, “
Modulation transfer spectroscopy in atomic rubidium
,”
Meas. Sci. Technol.
19
,
105601
(
2008
).
18.
B.
Cheng
,
Z.-Y.
Wang
,
B.
Wu
et al, “
Laser frequency stabilization and shifting by using modulation transfer spectroscopy
,”
Chin. Phys. B
23
,
104222
(
2014
).
19.
R. P.
Abel
,
A. K.
Mohapatra
,
M. G.
Bason
,
J. D.
Pritchard
,
K. J.
Weatherill
,
U.
Raitzsch
, and
C. S.
Adams
, “
Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system
,”
Appl. Phys. Lett.
94
,
071107
(
2009
).
20.
Y.
Jiao
,
J.
Li
,
L.
Wang
,
H.
Zhang
,
L.
Zhang
,
J.
Zhao
, and
S.
Jia
, “
Laser frequency locking based on Rydberg electromagnetically induced transparency
,”
Chin. Phys. B
25
,
053201
(
2016
).
21.
F.
Jia
,
J.
Zhang
,
L.
Zhang
,
F.
Wang
,
J.
Mei
,
Y.
Yu
,
Z.
Zhong
, and
F.
Xie
, “
Frequency stabilization method for transition to a Rydberg state using Zeeman modulation
,”
Appl. Opt.
59
,
2108
2113
(
2020
).
22.
A.
Vylegzhanin
,
S.
Nic Chormaic
, and
D. J.
Brown
, “
Rydberg electromagnetically induced transparency based laser lock to Zeeman sublevels with 0.6 GHz scanning range
,”
Rev. Sci. Instrum.
95
,
113001
(
2024
).
23.
S.
Bao
,
H.
Zhang
,
J.
Zhou
,
L.
Zhang
,
J.
Zhao
,
L.
Xiao
, and
S.
Jia
, “
Tunable frequency stabilization to Zeeman sublevel transitions between an intermediate state and Rydberg states
,”
Laser Phys.
27
,
015701
(
2016
).
24.
F.-D.
Jia
,
H.-Y.
Zhang
,
X.-B.
Liu
,
J.
Mei
,
Y.-H.
Yu
,
Z.-Q.
Lin
,
H.-Y.
Dong
,
Y.
Liu
,
J.
Zhang
,
F.
Xie
, and
Z.-P.
Zhong
, “
Transfer phase of microwave to beat amplitude in a Rydberg atom-based mixer by Zeeman modulation
,”
J. Phys. B: At., Mol. Opt. Phys.
54
,
165501
(
2021
).
25.
C.
Shi
,
R.
Wei
,
Z.
Zhou
,
D.
Lv
,
T.
Li
, and
Y.
Wang
, “
Magnetic field measurement on 87Rb atomic fountain clock
,”
Chin. Opt. Lett.
8
,
549
552
(
2010
).
26.
L.
Ma
,
D. A.
Anderson
, and
G.
Raithel
, “
Paschen-back effects and Rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency
,”
Phys. Rev. A
95
,
061804
(
2017
).
27.
H.-J.
Su
,
J.-Y.
Liou
,
I.-C.
Lin
, and
Y.-H.
Chen
, “
Optimizing the Rydberg EIT spectrum in a thermal vapor
,”
Opt. Express
30
,
1499
1510
(
2022
).
28.
C. T.
Fancher
,
K. L.
Nicolich
,
K. M.
Backes
,
N.
Malvania
,
K.
Cox
,
D. H.
Meyer
,
P. D.
Kunz
,
J. C.
Hill
,
W.
Holland
, and
B. L.
Schmittberger Marlow
, “
A self-locking Rydberg atom electric field sensor
,”
Appl. Phys. Lett.
122
,
094001
(
2023
).
29.
N.
Schlossberger
,
A. P.
Rotunno
,
A. B.
Artusio-Glimpse
,
N.
Prajapati
,
S.
Berweger
,
D.
Shylla
,
M. T.
Simons
, and
C. L.
Holloway
, “
Zeeman-resolved Autler–Townes splitting in Rydberg atoms with tunable resonances and a single transition dipole moment
,”
Phys. Rev. A
109
,
L021702
(
2024
).
30.
X.
Li
,
Y.
Cui
,
J.
Hao
,
F.
Zhou
,
Y.
Wang
,
F.
Jia
,
J.
Zhang
,
F.
Xie
, and
Z.
Zhong
, “
Magnetic-field-induced splitting of Rydberg electromagnetically induced transparency and Autler–Townes spectra in 87Rb vapor cell
,”
Opt. Express
31
,
38165
38178
(
2023
).
You do not currently have access to this content.