In particle image velocimetry (PIV), the brightness of a particle image sequence may change due to uneven laser intensity distribution and fluctuations in laser output. Consequently, the optical flow method (OFM), which relies on the brightness constancy assumption, becomes unsuitable. The traditional variational OFM is only accurate for small displacement fields but lacks robustness and accuracy when applied to PIV images with intensity variations. In this study, to address these issues, we improve the traditional cross-correlation OFM to establish a high-resolution hybrid cross-correlation optical flow method (CC-OFM) for particle images with large displacement and intensity variations. The data term, which combines the brightness constancy assumption with the gradient constancy assumption, compensates for the intensity changes between the particle image pairs. The proposed CC-OFM is quantitatively evaluated using both synthetic particle images and experimental particle images under various conditions, comparing the displacement results with those obtained using other methods. The results reveal that the proposed CC-OFM provides high accuracy and robustness for particle images with large displacement and intensity variations. Furthermore, its high spatial resolution allows it to capture flow details more effectively than the other methods.

1.
R. J.
Adrian
, “
Particle-imaging techniques for experimental fluid mechanics
,”
Annu. Rev. Fluid Mech.
23
,
261
304
(
1991
).
2.
M.
Amaratunga
,
H. A.
Rabenjafimanantsoa
, and
R. W.
Time
, “
Comparison of oscillatory flow conditions in Newtonian and non-Newtonian fluids using PIV and high-speed image analysis
,”
Flow Meas. Instrum.
70
,
101628
(
2019
).
3.
L.-W.
Chen
, “
Application of PIV measurement techniques to study the characteristics of flame–acoustic wave interactions
,”
Flow Meas. Instrum.
45
,
308
317
(
2015
).
4.
X.
Ye
and
X.
Niu
, “
Optimization in PIV algorithm for visualizing vortices in bubble wake
,”
Flow Meas. Instrum.
86
,
102177
(
2022
).
5.
F.
Scarano
, “
Iterative image deformation methods in PIV
,”
Meas. Sci. Technol.
13
,
R1
R19
(
2002
).
6.
F.
Scarano
and
M. L.
Riethmuller
, “
Iterative multigrid approach in PIV image processing with discrete window offset
,”
Exp. Fluids
26
,
513
523
(
1999
).
7.
F.
Becker
,
B.
Wieneke
,
S.
Petra
et al, “
Variational adaptive correlation method for flow estimation
,”
IEEE Trans. Image Process.
21
,
3053
3065
(
2012
).
8.
Z.
Yang
and
M.
Johnson
, “
Hybrid particle image velocimetry with the combination of cross-correlation and optical flow method
,”
J. Visualization
20
,
625
638
(
2017
).
9.
H.
Wang
,
G.
He
, and
S.
Wang
, “
Globally optimized cross-correlation for particle image velocimetry
,”
Exp. Fluids
61
,
228
(
2020
).
10.
T.
Liu
, “
OpenOpticalFlow: An open source program for extraction of velocity fields from flow visualization images
,”
J. Open Res. Software
5
,
29
(
2017
).
11.
T.
Liu
,
A.
Merat
,
M. H. M.
Makhmalbaf
et al, “
Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images
,”
Exp. Fluids
56
,
166
(
2015
).
12.
C. J.
Kähler
,
T.
Astarita
,
P. P.
Vlachos
et al, “
Main results of the 4th international PIV challenge
,”
Exp. Fluids
57
,
97
(
2016
).
13.
M.
Stanislas
,
K.
Okamoto
, and
C.
Kähler
, “
Main results of the first international PIV challenge
,”
Meas. Sci. Technol.
14
,
R63
R89
(
2003
).
14.
M.
Stanislas
,
K.
Okamoto
,
C. J.
Kähler
, and
J.
Westerweel
, “
Main results of the second international PIV challenge
,”
Exp. Fluids
39
,
170
191
(
2005
).
15.
M.
Stanislas
,
K.
Okamoto
,
C. J.
Kähler
et al, “
Main results of the third international PIV Challenge
,”
Exp. Fluids
45
,
27
71
(
2008
).
16.
R.
Theunissen
,
F.
Scarano
, and
M. L.
Riethmuller
, “
An adaptive sampling and windowing interrogation method in PIV
,”
Meas. Sci. Technol.
18
,
275
287
(
2007
).
17.
R.
Theunissen
,
F.
Scarano
, and
M. L.
Riethmuller
, “
Spatially adaptive PIV interrogation based on data ensemble
,”
Exp. Fluids
48
,
875
887
(
2009
).
18.
A.
Giannopoulos
,
P.-Y.
Passaggia
,
N.
Mazellier
, and
J.-L.
Aider
, “
On the optimal window size in optical flow and cross-correlation in particle image velocimetry: Application to turbulent flows
,”
Exp. Fluids
63
,
57
(
2022
).
19.
B. K. P.
Horn
and
B. G.
Schunck
, “
Determining optical flow
,”
Artif. Intell.
17
,
185
203
(
1981
).
20.
T.
Liu
and
D. M.
Salazar
, “
OpenOpticalFlow_PIV: An open source program integrating optical flow method with cross- correlation method for particle image velocimetry
,”
J. Open Res. Software
9
,
3
(
2021
).
21.
T.
Liu
,
D. M.
Salazar
,
H.
Fagehi
et al, “
Hybrid optical-flow-cross-correlation method for particle image velocimetry
,”
J. Fluids Eng.
142
(
2020
).
22.
T.
Corpetti
,
E.
Memin
, and
P.
Perez
, “
Dense estimation of fluid flows
,”
IEEE Trans. Pattern Anal. Mach. Intell.
24
,
365
380
(
2002
).
23.
T.
Corpetti
,
D.
Heitz
,
G.
Arroyo
et al, “
Fluid experimental flow estimation based on an optical-flow scheme
,”
Exp. Fluids
40
,
80
97
(
2005
).
24.
T.
Liu
and
L.
Shen
, “
Fluid flow and optical flow
,”
J. Fluid Mech.
614
,
253
291
(
2008
).
25.
T.
Brox
,
A.
Bruhn
,
N.
Papenberg
, and
J.
Weickert
, “
High accuracy optical flow estimation based on a theory for warping
,” in
Computer Vision—ECCV 2004
(
2004
), pp. 25–
36
.
26.
Q.
Zhong
,
H.
Yang
, and
Z.
Yin
, “
An optical flow algorithm based on gradient constancy assumption for PIV image processing
,”
Meas. Sci. Technol.
28
,
055208
(
2017
).
27.
P.
Ruhnau
,
T.
Kohlberger
,
C.
Schnörr
, and
H.
Nobach
, “
Variational optical flow estimation for particle image velocimetry
,”
Exp. Fluids
38
,
21
32
(
2004
).
28.
D.
Heitz
,
P.
Héas
,
E.
Mémin
, and
J.
Carlier
, “
Dynamic consistent correlation-variational approach for robust optical flow estimation
,”
Exp. Fluids
45
,
595
608
(
2008
).
29.
H.
Li
,
Z.
Ma
, and
H.
Zhu
, “
Background oriented Schlieren image displacement estimation method based on global optical flow
,”
Flow Meas. Instrum.
93
,
102420
(
2023
).
30.
N.
Papenberg
,
A.
Bruhn
,
T.
Brox
et al, “
Highly accurate optic flow computation with theoretically justified warping
,”
Int. J. Comput. Vision
67
,
141
158
(
2006
).
31.
D.
Sun
,
S.
Roth
, and
M. J.
Black
, “
Secrets of optical flow estimation and their principles
,” in
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2010
), pp.
2432
2439
.
32.
D.
Heitz
,
E.
Mémin
, and
C.
Schnörr
, “
Variational fluid flow measurements from image sequences: Synopsis and perspectives
,”
Exp. Fluids
48
,
369
393
(
2009
).
33.
D.
Suter
, “
Motion estimation and vector splines
,” in
1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings
(
IEEE
,
1994
), pp.
939
942
.
34.
W.
Thielicke
and
R.
Sonntag
, “
Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab
,”
J. Open Res. Software
9
,
12
(
2021
).
35.
J.
Carlier
, “
Second set of fluid mechanics image sequences
,” European Project Fluid Image Analysis and Description (FLUID). http://www.fluid.irisa.Fr.
36.
K.
Okamoto
,
S.
Nishio
,
T.
Saga
, and
T.
Kobayashi
, “
Standard images for particle-image velocimetry
,”
Meas. Sci. Technol.
11
,
685
691
(
2000
).

Supplementary Material

You do not currently have access to this content.