The four-bar parallelogram mechanism is widely used in microgrippers due to its parallel clamping characteristics. However, the rotation process of the four-bar parallelogram mechanism will produce parasitic displacement in the vertical direction. According to this, a high-precision restrained amplification mechanism with folding rectangular hinges is introduced, and the research is to reduce the parasitic movement through the structural design of the microgripper. Compared with the traditional four-bar parallelogram mechanism, the relative parasitic displacement of the restrained four-bar parallelogram mechanism is reduced by 80%. However, folding rectangular hinges will reduce the output displacement of the mechanism while improving the clamping accuracy. To solve the problem, the driving method adopts the pneumatic drive, and its large output force and high output displacement characteristics are in line with this kind of microgripper. Based on the Castigliano second theorem, the relationship between the input pressure and the input/output displacement of the mechanism is obtained. Experimental results show that the microgripper can realize the opening and closing of the movable jaw, as well as parallel clamping. When the movable jaw is closed, the error is 2.0% compared with the FEA (finite element analysis) result. The presentation of the folded rectangular hinge is of great significance to improve the clamping accuracy of microgrippers.

1.
H.
Jia
,
E.
Mailand
,
J.
Zhou
et al, “
Universal soft robotic microgripper
,”
Small
15
(
4
),
1803870
(
2019
).
2.
G.
Shao
,
H. O. T.
Ware
,
J.
Huang
et al, “
3D printed magnetically-actuating micro-gripper operates in air and water
,”
Addit. Manuf.
38
,
101834
(
2021
).
3.
X.
Chen
,
Z. M.
Xie
, and
H.
Tan
, “
Design, analysis and test of a novel cylinder-driven mode applied to microgripper
,”
J. Mech. Des.
144
(
5
),
053302
(
2022
).
4.
C. M.
Madl
,
S. C.
Heilshorn
, and
H. M.
Blau
, “
Bioengineering strategies to accelerate stem cell therapeutics
,”
Nature
557
(
7705
),
335
342
(
2018
).
5.
C.
Yin
,
F.
Wei
,
Z.
Zhan
et al, “
Untethered microgripper-the dexterous hand at microscale
,”
Biomed. Microdevices
21
,
1
18
(
2019
).
6.
S.
Hampali
,
A.
Pai S
, and
G. K.
Ananthasuresh
, “
A tunable variable-torque compliant hinge using open-section shells
,”
J. Mech. Rob.
12
(
6
),
061010
(
2020
).
7.
H.
Kooistra
,
C. J.
Kim
,
W. W. P. J.
van De Sande
, and
J. L.
Herder
, “
Shape optimization framework for the path of the primary compliance vector in compliant mechanisms
,”
J. Mech. Rob.
12
(
6
),
061012
(
2020
).
8.
H.
Xu
,
J.
Gan
, and
X.
Zhang
, “
A generalized pseudo-rigid-body PPRR model for both straight and circular beams in compliant mechanisms
,”
Mech. Mach. Theory
154
,
104054
(
2020
).
9.
X.
Chen
,
Z.
Xie
,
H.
Tan
, and
K.
Tai
, “
Design and mechanical modeling of high-magnification and low-parasitic displacement microgripper with three-stage displacement amplification
,”
Mech. Mach. Theory
190
,
105463
(
2023
).
10.
X.
Chen
,
Z.
Xie
,
K.
Tai
, and
H.
Tan
, “
Design of low parasitic motion microgripper based on symmetrical parallelogram mechanism
,”
Sens. Actuators, A
367
,
115072
(
2024
).
11.
A. A.
Felix
,
D.
Colón
,
B. M.
Verona
et al, “
Identification and robust controllers for an electrostatic microgripper
,”
J. Vib. Eng. Technol.
9
(
3
),
389
397
(
2021
).
12.
L. A.
Velosa-Moncada
,
L. A.
Aguilera-Cortés
,
M. A.
González-Palacios
et al, “
Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications
,”
Sensors
18
(
5
),
1664
(
2018
).
13.
A.
Pimpin
,
I.
Charoenbunyarit
, and
W.
Srituravanich
, “
Material and performance characterization of Z-shaped nickel electrothermal micro-actuators
,”
Sens. Actuators, A
253
,
49
58
(
2017
).
14.
H. P.
Phan
,
M. N.
Nguyen
,
N. V.
Nguyen
, and
D. T.
Chu
, “
Analytical modeling of a silicon-polymer electrothermal microactuator
,”
Microsys. Technol.
23
(
1
),
101
111
(
2017
).
15.
M.
Garcés-Schröder
,
T.
Zimmermann
,
C.
Siemers
et al, “
Shape memory alloy actuators for silicon microgrippers
,”
J. Microelectromech. Syst.
28
(
5
),
869
881
(
2019
).
16.
J. H.
Kyung
,
B. G.
Ko
,
Y. H.
Ha
, and
G.
Chung
, “
Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges
,”
Sens. Actuators, A
141
(
1
),
144
150
(
2008
).
17.
S. K.
Nah
and
Z. W.
Zhong
, “
A microgripper using piezoelectric actuation for micro-object manipulation
,”
Sens. Actuators, A
133
(
1
),
218
224
(
2007
).
18.
W.
Chen
,
X.
Zhang
,
H.
Li
et al, “
Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper
,”
Mech. Mach. Theory
118
,
32
52
(
2017
).
19.
A.
Alogla
,
P.
Scanlan
,
W. M.
Shu
, and
R.
Reuben
, “
A scalable syringe-actuated microgripper for biological manipulation
,”
Sens. Actuators, A
202
,
135
139
(
2013
).
20.
B.
Gursky
,
S.
Bütefisch
,
M.
Leester-Schädel
et al, “
A disposable pneumatic microgripper for cell manipulation with image-based force sensing
,”
Micromachines
10
(
10
),
707
(
2019
).
21.
H.
Xie
,
X.
Meng
,
H.
Zhang
, and
L.
Sun
, “
Development of a magnetically driven microgripper for piconewton force-controlled microscale manipulation and characterization
,”
IEEE Trans. Ind. Electron.
67
(
3
),
2065
2075
(
2020
).
22.
V.
Gopal
,
M. S.
Alphin
, and
R.
Bharanidaran
, “
Design of compliant mechanism microgripper utilizing the Hoekens straight line mechanism
,”
J. Test. Eval.
49
(
3
),
1599
1612
(
2021
).
23.
T. K.
Das
,
B.
Shirinzadeh
,
M.
Ghafarian
et al, “
Design, analysis and experimental investigations of a high precision flexure-based microgripper for micro/nano manipulation
,”
Mechatronics
69
,
102396
(
2020
).
24.
M. N.
Mohd Zubir
and
B.
Shirinzadeh
, “
Development of a high precision flexure-based microgripper
,”
Precis. Eng.
33
(
4
),
362
370
(
2009
).
25.
C.
Liang
,
F.
Wang
,
B.
Shi
et al, “
Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation
,”
Sens. Actuators, A
269
,
227
237
(
2018
).
26.
T. K.
Das
,
B.
Shirinzadeh
,
M.
Ghafarian
, and
A.
Al-Jodah
, “
Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper
,”
Smart Mater. Struct.
29
(
4
),
045028
(
2020
).
27.
L.
Duan
,
L. F.
Qiu
,
H. S.
Weng
et al, “
Coupled-field analysis of the compliant slider mechanism with rectangle flexure hinges based on ANSYS
,” in
Advanced Materials Research
(
Trans Tech Publications Ltd.
,
2011
), Vol.
189
, pp.
1897
1900
.
28.
S. T.
Smith
,
V. G.
Badami
,
J. S.
Dale
, and
Y.
Xu
, “
Elliptical flexure hinges
,”
Rev. Sci. Instrum.
68
(
3
),
1474
1483
(
1997
).
29.
N.
Lobontiu
,
J. S. N.
Paine
,
E.
O’Malley
, and
M.
Samuelson
, “
Parabolic and hyperbolic flexure hinges: Flexibility, motion precision and stress characterization based on compliance closed-form equations
,”
Precis. Eng.
26
(
2
),
183
192
(
2002
).
30.
X.
Wang
,
Y.
Yu
,
Z.
Xu
et al, “
Modelling and performance analysis of a curvature-adjustable multiple-axis flexure hinge based on Bézier curve
,”
Proc. Instit. Mech.l Eng., Part C: J. Mech. Eng. Sci.
238
(
9
),
3710
3723
(
2024
).
31.
X.
Wang
,
Y.
Yu
,
Z.
Xu
et al, “
Generalized model and performance analysis of two-axis flexure hinges based on quadratic rational Bézier curve
,”
Mech. Based Des. Struct. Mach.
52
(
8
),
5350
5370
(
2024
).
32.
N.
Xu
,
M.
Dai
, and
X.
Zhou
, “
Analysis and design of symmetric notch flexure hinges
,”
Adv. Mech. Eng.
9
(
11
),
1687814017734513
(
2017
).
33.
A.
Koseki
,
H.
Momose
,
M.
Kawahito
et al,
Compiler
,
US20020049965
A1
(
2002
).
34.
L. L.
Howell
, “
Compliant mechanisms
,” in
21st Century Kinematics
(
Springer
,
London
,
2013
), pp.
189
216
.
35.
Y.-Q.
Yu
,
S.-K.
Zhu
et al, “
5R pseudo-rigid-body model for inflection beams in compliant mechanisms
,”
Mech. Mach. Theory
116
,
501
512
(
2017
).
You do not currently have access to this content.