An optically accessible prechamber-equipped constant volume combustion chamber (CVCC) has been designed and installed at the University of Minnesota to investigate turbulent jet ignition and reacting flows. The CVCC features an optically accessible windowed prechamber, allowing the extensive study of the combustion physics inside the prechamber. The prechamber is also modular, allowing multiple internal geometries and nozzle configurations. Two pairs of optical windows in the main combustion chamber, along with a bottom window axisymmetrically viewing the prechamber nozzle, provide exceptional optical accessibility. Optical techniques such as schlieren imaging and chemiluminescence, along with laser diagnostics, can be employed to gain a fundamental understanding of turbulent jet ignition chemistry. The CVCC is designed to withstand a maximum combustion pressure of 100 bars. Multiple standardized and custom ports on the main chamber allow various fueling techniques and sensor integration. The performance and reliability of the CVCC were demonstrated through prechamber and main chamber visualization studies of nanosecond spark-assisted turbulent jet ignition. The optically accessible prechamber-CVCC setup, therefore, provides a platform for highly detailed combustion analysis.

1.
D. Y.
Chen
,
A. F.
Ghoniem
, and
A. K.
Oppenheim
, “
Experimental and theoretical study of combustion jet ignition
,”
Technical Report Nos. NASA-CR-168139 and DOE/NASA/0131-1
,
1983
, pp.
1
130
.
2.
S.
Yamaguchi
,
N.
Ohiwa
, and
T.
Hasegawa
, “
Ignition and burning process in a divided chamber bomb
,”
Combust. Flame
59
(
2
),
177
187
(
1985
).
3.
I. U.
Perera
,
S. D.
Wijeyakulasuriya
, and
M. R.
Nalim
, “
Hot combustion torch jet ignition delay time for ethylene-air mixtures
,” in
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics, Inc.
,
2011
).
4.
A.
Karimi
,
M.
Rajagopal
, and
R.
Nalim
, “
Traversing hot-jet ignition in a constant-volume combustor
,”
J. Eng. Gas Turbines Power
136
(
4
),
041506
(
2014
).
5.
S.
Biswas
and
L.
Qiao
, “
Prechamber hot jet ignition of ultra-lean H2/air mixtures: Effect of supersonic jets and combustion instability
,”
SAE Int. J. Engines
9
(
3
),
1584
1592
(
2016
).
6.
S.
Biswas
,
S.
Tanvir
,
H.
Wang
, and
L.
Qiao
, “
On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion
,”
Appl. Therm. Eng.
106
,
925
937
(
2016
).
7.
J.
Wallesten
and
J.
Chomiak
, “
Investigation of spark position effects in a small pre-chamber on ignition and early flame propagation
,” in
SAE Technical Paper 2000-01-2839
(
SAE International
,
2000
).
8.
R.
Sadanandan
,
D.
Markus
,
R.
Schießl
,
U.
Maas
,
J.
Olofsson
,
H.
Seyfried
, and
M.
Aldén
, “
Detailed investigation of ignition by hot gas jets
,”
Proc. Combust. Inst.
31
(
1
),
719
726
(
2007
).
9.
Q.
Sun
,
T. H.
Lee
,
D.
Zhu
,
H.
Wu
,
Z.
Shi
, and
C.-f.
Lee
, “
Study on ignition mechanism of turbulent jet pre-chamber of H2/CO mixture
,”
Int. J. Hydrogen Energy
68
,
853
866
(
2024
).
10.
Z.
Liu
,
L.
Zhou
,
L.
Zhong
,
P.
Liu
, and
H.
Wei
, “
Experimental investigation on the combustion characteristics of NH3/H2/air by the spark ignition and turbulent jet ignition
,”
Combust. Sci. Technol.
196
(
1
),
73
94
(
2022
).
11.
G.
Gentz
,
M.
Gholamisheeri
, and
E.
Toulson
, “
A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization
,”
Appl. Energy
189
,
385
394
(
2017
).
12.
W. P.
Attard
,
E.
Toulson
,
A.
Huisjen
,
X.
Chen
,
G.
Zhu
, and
H.
Schock
, “
Spark ignition and pre-chamber turbulent jet ignition combustion visualization
,” in
SAE Technical Paper 2012-01-0823
(
SAE International
,
2012
).
13.
E.
Toulson
,
H. C.
Watson
, and
W. P.
Attard
, “
Modeling alternative prechamber fuels in jet assisted ignition of gasoline and LPG
,” in
SAE Technical Paper 2009-01-0721
(
SAE International
,
2009
).
14.
A.
Shah
,
P.
Tunestal
, and
B.
Johansson
, “
Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines
,” in
SAE Technical Paper 2015-01-0867
(
SAE International
,
2015
).
15.
A.
Shah
,
P.
Tunestal
, and
B.
Johansson
, “
Scalability aspects of pre-chamber ignition in heavy duty natural gas engines
,” in
SAE Technical Paper 2016-01-0796
(
SAE International
,
2016
).
16.
Z.
Wang
,
Y.
Zhang
,
J.
Huang
,
Z.
Liang
,
L.
Zheng
, and
J.
Lu
, “
Ignition method effect on detonation initiation characteristics in a pulse detonation engine
,”
Appl. Therm. Eng.
93
,
1
7
(
2016
).
17.
R.
Stone
,
A.
Clarke
, and
P.
Beckwith
, “
Correlations for the laminar-burning velocity of methane/diluent/air mixtures obtained in free-fall experiments
,”
Combust. Flame
114
(
3–4
),
546
555
(
1998
).
18.
K.
Saeed
and
C. R.
Stone
, “
Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model
,”
Combust. Flame
139
(
1–2
),
152
166
(
2004
).
19.
C.
Prathap
,
A.
Ray
, and
M. R.
Ravi
, “
Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition
,”
Combust. Flame
155
(
1–2
),
145
160
(
2008
).
20.
S.
Kook
and
L. M.
Pickett
, “
Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions
,”
Fuel
93
,
539
548
(
2012
).
21.
A. F.
Alhikami
and
W. C.
Wang
, “
Experimental study of the spray ignition characteristics of hydro-processed renewable jet and petroleum jet fuels in a constant volume combustion chamber
,”
Fuel
283
,
119286
(
2021
).
22.
B.
Wolk
,
A.
DeFilippo
,
J. Y.
Chen
,
R.
Dibble
,
A.
Nishiyama
, and
Y.
Ikeda
, “
Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber
,”
Combust. Flame
160
(
7
),
1225
1234
(
2013
).
23.
J.
Hwang
,
C.
Bae
,
J.
Park
,
W.
Choe
,
J.
Cha
, and
S.
Woo
, “
Microwave-assisted plasma ignition in a constant volume combustion chamber
,”
Combust. Flame
167
,
86
96
(
2016
).
24.
W.
Vera-Tudela
,
C.
Barro
, and
K.
Boulouchos
, “
Investigations on spark pre-chamber ignition and subsequent turbulent jet main chamber ignition in a novel optically accessible test rig
,”
Int. J. Engine Res.
23
(
9
),
1543
1555
(
2022
).
25.
E.
Mastorakos
,
P.
Allison
,
A.
Giusti
,
P.
De Oliveira
,
S.
Benekos
,
Y.
Wright
,
C.
Frouzakis
, and
K.
Boulouchos
, “
Fundamental aspects of jet ignition for natural gas engines
,”
SAE Int. J. Engines
10
(
5
),
2429
2438
(
2017
).
26.
A.
Morones
,
V.
León
, and
E. L.
Petersen
, “
Reconfigurable fan-stirred flame bomb with optical access
,” in
AIAA SciTech Forum—55th AIAA Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics, Inc.
,
2017
).
27.
Y.
Ma
,
S.
Huang
,
R.
Huang
,
Y.
Zhang
, and
S.
Xu
, “
Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber
,”
Appl. Energy
185
,
519
530
(
2017
).
28.
A.
Barain
,
G.
Trombley
,
B. C.
Duva
, and
E.
Toulson
, “
Laminar burning velocities of diluted stoichiometric hydrogen/air mixtures
,” in
SAE Technical Paper 2023-01-0331
(
SAE International
,
2023
).
29.
E.
Hu
,
Z.
Huang
,
J.
He
,
C.
Jin
, and
J.
Zheng
, “
Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames
,”
Int. J. Hydrogen Energy
34
(
11
),
4876
4888
(
2009
).
30.
K. P.
Shrestha
,
C.
Lhuillier
,
A. A.
Barbosa
,
P.
Brequigny
,
F.
Contino
,
C.
Mounaïm-Rousselle
,
L.
Seidel
, and
F.
Mauss
, “
An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature
,”
Proc. Combust. Inst.
38
(
2
),
2163
2174
(
2021
).
31.
M.
Morovatiyan
,
M.
Shahsavan
,
J.
Aguilar
, and
J. H.
Mack
, “
Effect of argon concentration on laminar burning velocity and flame speed of hydrogen mixtures in a constant volume combustion chamber
,”
J. Energy Resour. Technol.
143
(
3
),
1
28
(
2021
).
32.
J.
Cao
,
X.
Leng
,
Z.
He
,
Q.
Wang
,
W.
Shang
, and
B.
Li
, “
Experimental study of the diesel spray combustion and soot characteristics for different double-injection strategies in a constant volume combustion chamber
,”
J. Energy Inst.
93
(
1
),
335
350
(
2020
).
33.
B.
Galmiche
,
N.
Mazellier
,
F.
Halter
, and
F.
Foucher
, “
Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements
,”
Exp. Fluids
55
(
1
),
1636
(
2014
).
34.
D.
Bradley
,
M.
Lawes
, and
M. E.
Morsy
, “
Measurement of turbulence characteristics in a large scale fan-stirred spherical vessel
,”
J. Turbul.
20
(
3
),
195
213
(
2019
).
35.
P. R.
Yoder
,
Opto-Mechanical Systems Design
, 3rd ed. (
CRC Press
,
2005
), pp.
1
837
.
You do not currently have access to this content.