Experimental constraints and sample limitations can preclude ideal measurements of electrical transport properties of materials. In such situations, AC electrical transport methods are often employed due to a significant increase in signal-to-noise ratio they can provide. However, dynamic effects that are not often accounted for may be present that may modify the signals in these measurements. In particular, dynamic filtering effects are prominent in small, granular, and heterogeneous materials. We demonstrate that a lock-in amplifier based circuit can distinguish between these DC transport and AC filtering effects. We further demonstrate that this filtering can reveal distinct signatures of magnetic transitions while providing a measure of sample quality.

1.
L.
van der Pauw
, “
A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape
,”
Phillips Tech. Rev.
20
,
220
224
(
1958
).
2.
M.
Schröder
et al, “
Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals
,”
Mater. Res. Express
1
,
035012
(
2014
).
3.
R. B.
Goldfarb
,
M.
Lelental
, and
C. A.
Thompson
, “
Alternating-field susceptometry and magnetic susceptibility of superconductors
,” in
Magnetic Susceptibility of Superconductors and Other Spin Systems
, edited by
R. A.
Hein
,
T. L.
Francavilla
, and
D. H.
Liebenberg
(
Springer
,
Boston, MA
,
1991
), pp.
49
80
.
4.
P. P.
Sahay
et al, “
AC transport properties of nanocrystalline SnO2 semiconductor
,”
Ceram. Int.
38
,
1281
1286
(
2012
).
5.
M.
Somayazulu
et al, “
Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
,”
Phys. Rev. Lett.
122
,
027001
(
2019
).
6.
D.
Semenok
et al, “
Evidence for pseudogap phase in cerium superhydrides: CeH10 and CeH9
,” arXiv.2307.11742.
7.
D. C.
Ralph
and
M. D.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1216
(
2008
).
8.
M.
Díaz-Michelena
,
P.
Cobos
, and
C.
Aroca
, “
Lock-in amplifiers for AMR sensors
,”
Sens. Actuators, A
222
,
149
159
(
2015
).
9.
J. M.
Oliveira
,
W. C.
Ferreira
, and
F.
Hiodo
, “
Development of lock-in resistivimeter for measuring resistivity and induced polarization under high electrical noise
,” in
78th EAGE Conference and Exhibition 2016
(
European Association of Geoscientists & Engineers
,
2016
), pp.
1
5
.
10.
A. C.
Mark
and
R. J.
Hemley
, “
On the lineshapes of temperature-dependent transport measurements of superconductors under pressure
,”
J. Supercond. Nov. Magn.
38
,
25
(
2024
).
11.
G.
Conte
et al, “
Transport properties of CVD diamond elucidated by DC and AC conductivity measurements
,”
Diamond Relat. Mater.
13
,
277
281
(
2004
).
12.
N.
Bonanos
et al, “
Applications of impedance spectroscopy
,” in
Impedance Spectroscopy
(
John Wiley & Sons, Ltd.
,
2018
), pp.
175
478
.
13.
S. L.
Wipf
, “
AC losses in superconductors
,”
J. Appl. Phys.
39
,
2538
(
1968
).
14.
A.
Campbell
, “
AC losses in high Tc superconductors
,”
IEEE Trans. Appl. Supercond.
5
,
682
687
(
1995
).
15.
J.
Choi
et al, “
Questioning the validity of spintronic inductors: Potential artifacts in emergent inductance
,”
Appl. Phys. Lett.
125
,
192403
(
2024
).
16.
T. R.
Lemberger
,
I.
Hetel
,
A.
Tsukada
, and
M.
Naito
, “
Anomalously sharp superconducting transitions in overdoped La2−xSrxCuO4 films
,”
Phys. Rev. B
82
,
214513
(
2010
).
17.
R.
Shao
,
M. F.
Chisholm
,
G.
Duscher
, and
D. A.
Bonnell
, “
Low-temperature resistance anomaly at SrTiO3 grain boundaries: Evidence for an interface-induced phase transition
,”
Phys. Rev. Lett.
95
,
197601
(
2005
).
18.
H.
Liao
et al, “
Physical properties obtained from measurement model analysis of impedance measurements
,”
Electrochim. Acta
354
,
136747
(
2020
).
19.
R.
Bouamrane
and
D. P.
Almond
, “
The ‘emergent scaling’ phenomenon and the dielectric properties of random resistor–capacitor networks
,”
J. Phys.: Condens. Matter
15
,
4089
(
2003
).
20.
E.-B.
Wei
,
G. Q.
Gu
, and
Y. M.
Poon
, “
Dielectric responses of anisotropic graded granular composites having arbitrary inclusion shapes
,”
Phys. Rev. B
77
,
104204
(
2008
).
21.
R. H.
Caverly
and
G.
Hiller
, “
The small signal a.c. impedance of gallium arsenide and silicon p-i-n diodes
,”
Solid-State Electron.
33
,
1255
1263
(
1990
).
22.
K.
Ariyoshi
,
M.
Tanimoto
, and
Y.
Yamada
, “
Impact of particle size of lithium manganese oxide on charge transfer resistance and contact resistance evaluated by electrochemical impedance analysis
,”
Electrochim. Acta
364
,
137292
(
2020
).
23.
L. J.
van der Pauw
, “
A method of measuring specific resistivity and Hall effect of discs of arbitrary shape
,” in
Semiconductor Devices: Pioneering Papers
(
World Scientific
,
1991
), pp.
174
182
.
24.
P.
Jacobsson
and
B.
Sundqvist
, “
Thermal conductivity and electrical resistivity of gadolinium as functions of pressure and temperature
,”
Phys. Rev. B
40
,
9541
9551
(
1989
).
25.
J. B.
Sousa
et al, “
Spin reorientation transition in gadolinium
,” in
Recent Developments in Condensed Matter Physics: Volume 4 - Low-Dimensional Systems, Phase Changes, and Experimental Techniques
, edited by
J. T.
Devreese
,
L. F.
Lemmens
,
V. E.
Van Doren
, and
J.
Van Royen
(
Springer
,
Boston, MA
,
1981
), pp.
115
124
.
26.
S. Y.
Dan’kov
,
A. M.
Tishin
,
V. K.
Pecharsky
, and
K. A.
Gschneidner
,
Jr
, “
Magnetic phase transitions and the magnetothermal properties of gadolinium
,”
Phys. Rev. B
57
,
3478
3490
(
1998
).
27.
J. M. D.
Coey
,
V.
Skumryev
, and
K.
Gallagher
, “
Is gadolinium really ferromagnetic?
,”
Nature
401
,
35
36
(
1999
).
28.
G. S.
Burkhanov
et al, “
Magnetocaloric properties of distilled gadolinium: Effects of structural inhomogeneity and hydrogen impurity
,”
Appl. Phys. Lett.
104
,
242402
(
2014
).
29.
J.
Nagamatsu
et al, “
Superconductivity at 39 K in magnesium diboride
,”
Nature
410
,
63
64
(
2001
).
30.
W. A.
Soomro
et al, “
AC loss in high-temperature superconducting bulks subjected to alternating and rotating magnetic fields
,”
Materials
16
,
633
(
2023
).
31.
B. J.
Hattink
et al, “
Competing tunneling and capacitive paths in Co-ZrO2 granular thin films
,”
Phys. Rev. B
67
,
033402
(
2003
).
32.
H.
Bakkali
,
M.
Dominguez
,
X.
Batlle
, and
A.
Labarta
, “
Equivalent circuit modeling of the ac response of Pd-ZrO2 granular metal thin films using impedance spectroscopy
,”
J. Phys. D: Appl. Phys.
48
,
335306
(
2015
).
33.
N. P.
Salke
,
A. C.
Mark
,
M.
Ahart
, and
R. J.
Hemley
, “
Evidence for near ambient superconductivity in the Lu-N-H system
,” arXiv.2306.06301.
34.
J. R.
Miller
and
J. M.
Pierce
, “
Fluctuation effects in the complex impedance of superconducting Tin–Whisker crystals near Tc
,”
Phys. Rev. B
8
,
4164
4174
(
1973
).
35.
D.
Perconte
et al, “
Low-frequency imaginary impedance at the superconducting transition of 2H-NbSe2
,”
Phys. Rev. Appl.
13
,
054040
(
2020
).
36.
J. L.
Tallon
et al, “
High- Tc superconducting phases in the series Bi2.1 (Ca, Sr)n+1CunO2n+4+δ
,”
Nature
333
,
153
156
(
1988
).
37.
W. W.
Warren
et al, “
Cu spin dynamics and superconducting precursor effects in planes above Tc in YBa2Cu3O6.7
,”
Phys. Rev. Lett.
62
,
1193
1196
(
1989
).
38.
H.
Alloul
,
T.
Ohno
, and
P.
Mendels
, “
89Y NMR evidence for a fermi-liquid behavior in YBa2Cu3O6+x
,”
Phys. Rev. Lett.
63
,
1700
1703
(
1989
).
39.
X.
Ma
,
M.
Zeng
,
H.
Guo
, and
S.
Feng
, “
Low temperature T2 resistivity in the underdoped pseudogap phase versus T-linear resistivity in the overdoped strange-metal phase of cuprate superconductors
,”
Phys. Rev. B
110
,
094520
(
2024
). 094520
40.
J. M.
Tranquada
et al, “
Evidence for stripe correlations of spins and holes in copper oxide superconductors
,”
Nature
375
,
561
563
(
1995
).
41.
M. B.
Maple
, “
Interplay between superconductivity and magnetism
,”
Physica B
215
,
110
126
(
1995
).
42.
H.
Ding
et al, “
Spectroscopic evidence for a pseudogap in the normal state of underdoped high- Tc superconductors
,”
Nature
382
,
51
54
(
1996
).
43.
J. M.
Tranquada
, “
Cuprate superconductors as viewed through a striped lens
,”
Adv. Phys.
69
,
437
509
(
2020
).
44.
S.
Reich
,
G.
Leitus
, and
I.
Felner
, “
On the magnetism of the normal state in MgB2
,”
J. Supercond.: Incorporating Novel Magn.
15
,
109
111
(
2002
).
45.
J. A.
Stuller
,
An Introduction to Signals and Systems
(
Thomson Learning
,
London
,
2007
).
46.
X.-J.
Chen
et al, “
Enhancement of superconductivity by pressure-driven competition in electronic order
,”
Nature
466
,
950
953
(
2010
).
47.
A.
Mark
(
2024
), “
Raw data from ‘AC transport detection of magnetic transitions in small and granular samples
,” Zenodo. https://zenodo.org/records/14146958
48.
N. K.
Man
and
H. T.
Do
, “
Signature of Tc above 111 K in Li-doped triple-layered cuprates Bi1.6⁢Pb0.4⁢Sr2⁢Ca2⁢(Cux⁢Li1−x)3⁢O10+δ
,”
Phys. Rev. Mater.
8
,
124802
(
2024
).
You do not currently have access to this content.