Ultra-high field magnetic resonance imaging (MRI) offers significant advantages in terms of signal-to-noise ratio and spatial resolution. In this study, we detail the development of a multi-channel home-built MRI console operating at 14 T. We propose a hybrid analog–digital framework that shifts high-frequency radio frequency transmission and reception issues to lower frequencies, utilizing software-defined radio technology to process these low-frequency signals. Digital pre-emphasis is used in gradient calculations to counteract the effects of eddy currents during gradient switching. Our console can transmit and receive at center frequencies up to 600 MHz. The pulse programmer module achieves a timing resolution of 20 ns, while the transmitter can independently generate waveforms with varying amplitude, frequency, phase, and envelope. The receiver’s dual-stage gain control provides 63 dB of adjustable range, optimizing the magnetic resonance (MR) signal’s dynamic range. After frequency conversion, the MR signals are digitized with 16-bit resolution and 100 MHz sampling rate. High-resolution water phantom images are acquired on the 14 T Bruker Ascend 600 nuclear magnetic resonance magnet, demonstrating its potential for clinical research and application.

1.
W.
van der Zwaag
,
A.
Schäfer
,
J. P.
Marques
,
R.
Turner
, and
R.
Trampel
, “
Recent applications of UHF-MRI in the study of human brain function and structure: A review
,”
NMR Biomed.
29
,
1274
1288
(
2016
).
2.
G.
Barisano
,
F.
Sepehrband
,
S.
Ma
,
K.
Jann
,
R.
Cabeen
,
D. J.
Wang
,
A. W.
Toga
, and
M.
Law
, “
Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field
,”
Br. J. Radiol.
92
,
20180492
(
2019
).
3.
A.
Shaffer
,
S. S.
Kwok
,
A.
Naik
,
A. T.
Anderson
,
F.
Lam
,
T.
Wszalek
,
P. M.
Arnold
, and
W.
Hassaneen
, “
Ultra-high-field MRI in the diagnosis and management of gliomas: A systematic review
,”
Front. Neurol.
13
,
857825
(
2022
).
4.
L. M.
Schreiber
et al, “
Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research
,”
Front. Cardiovasc. Med.
10
,
1068390
(
2023
).
5.
H.-H.
Lee
,
D. K.
Sodickson
, and
R.
Lattanzi
, “
An analytic expression for the ultimate intrinsic SNR in a uniform sphere
,”
Magn. Reson. Med.
80
,
2256
2266
(
2018
).
6.
C.
Le Ster
,
A.
Grant
,
P.-F.
Van de Moortele
,
A.
Monreal-Madrigal
,
G.
Adriany
,
A.
Vignaud
,
F.
Mauconduit
,
C.
Rabrait-Lerman
,
B. A.
Poser
,
K.
Uğurbil
, and
N.
Boulant
, “
Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7 T
,”
Magn. Reson. Med.
88
,
2131
2138
(
2022
).
7.
S. M.
Wright
,
D. G.
Brown
,
J. R.
Porter
,
D. C.
Spence
,
E.
Esparza
,
D. C.
Cole
, and
F. R.
Huson
, “
A desktop magnetic resonance imaging system
,”
Magn. Reson. Mater. Phys., Biol. Med.
13
,
177
185
(
2001
).
8.
S.
Jie
,
X.
Qin
,
L.
Ying
, and
L.
Gengying
, “
Home-built magnetic resonance imaging system (0.3 T) with a complete digital spectrometer
,”
Rev. Sci. Instrum.
76
,
105101
(
2005
).
9.
Z.
Liu
,
C.
Zhao
,
H.
Zhou
, and
H.
Feng
, “
A novel digital magnetic resonance imaging spectrometer
,” in
2006 International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEEE
,
2006
), pp.
280
283
.
10.
S.
Handa
,
T.
Domalain
, and
K.
Kose
, “
Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller
,”
Rev. Sci. Instrum.
78
,
084705
(
2007
).
11.
P. P.
Stang
,
S. M.
Conolly
,
J. M.
Santos
,
J. M.
Pauly
, and
G. C.
Scott
, “
Medusa: A scalable MR console using USB
,”
IEEE Trans. Med. Imaging
31
,
370
379
(
2011
).
12.
S.
Hashimoto
,
K.
Kose
, and
T.
Haishi
, “
Development of a pulse programmer for magnetic resonance imaging using a personal computer and a high-speed digital input–output board
,”
Rev. Sci. Instrum.
83
,
053702
(
2012
).
13.
M.
Tsuda
,
D.
Tamada
,
Y.
Terada
, and
K.
Kose
, “
Development of digital MRI consoles using general-purpose digital instruments and microcontroller boards
,”
Appl. Magn. Reson.
47
,
847
858
(
2016
).
14.
L. L.
Wald
,
P. C.
McDaniel
,
T.
Witzel
,
J. P.
Stockmann
, and
C. Z.
Cooley
, “
Low-cost and portable MRI
,”
J. Magn. Reson. Imaging
52
,
686
696
(
2020
).
15.
N.
Boulant
,
F.
Mauconduit
,
V.
Gras
,
A.
Amadon
,
C.
Le Ster
,
M.
Luong
,
A.
Massire
,
C.
Pallier
,
L.
Sabatier
,
M.
Bottlaender
,
A.
Vignaud
, and
D.
Le Bihan
, “
In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner
,”
Nat. Methods
21
,
2013
2016
(
2024
).
16.
C. A.
Michal
,
K.
Broughton
, and
E.
Hansen
, “
A high performance digital receiver for home-built nuclear magnetic resonance spectrometers
,”
Rev. Sci. Instrum.
73
,
453
458
(
2002
).
17.
R. G.
Vaughan
,
N. L.
Scott
, and
D. R.
White
, “
The theory of bandpass sampling
,”
IEEE Trans. Signal Process.
39
,
1973
1984
(
1991
).
18.
P.
Pérez
,
A.
Santos
, and
J. J.
Vaquero
, “
Potential use of the undersampling technique in the acquisition of nuclear magnetic resonance signals
,”
Magn. Reson. Mater. Phys., Biol. Med.
13
,
109
117
(
2001
).
19.
W.
Tang
and
W.
Wang
, “
A single-board NMR spectrometer based on a software defined radio architecture
,”
Meas. Sci. Technol.
22
,
015902
(
2010
).
20.
C. J.
Hasselwander
,
Z.
Cao
, and
W. A.
Grissom
, “
gr-MRI: A software package for magnetic resonance imaging using software defined radios
,”
J. Magn. Reson.
270
,
47
55
(
2016
).
21.
C.
Blücher
,
H.
Han
,
W.
Hoffmann
,
R.
Seemann
,
F.
Seifert
,
T.
Niendorf
, and
L.
Winter
, “
COSI transmit: Open source soft-and hardware transmission system for traditional and rotating MR
,”
Proc. Intl. Soc. Mag. Reson. Med.
25
,
1055
(
2017
), https://cds.ismrm.org/protected/17MProceedings/PDFfiles/1055.html.
22.
S.
Anand
,
J. P.
Stockmann
,
L. L.
Wald
, and
T.
Witzel
, “
A low-cost (<$500 USD) FPGA-based console capable of real-time control
,”
Proc. Intl. Soc. Mag. Reson. Med.
26
,
0948
(
2018
), https://cds.ismrm.org/protected/18MProceedings/PDFfiles/0948.html.
23.
C. A.
Michal
, “
A low-cost multi-channel software-defined radio-based NMR spectrometer and ultra-affordable digital pulse programmer
,”
Concepts Magn. Reson., Part B
48B
,
e21401
(
2018
).
24.
B.
Murmann
, “
The successive approximation register ADC: A versatile building block for ultra-low- power to ultra-high-speed applications
,”
IEEE Commun. Mag.
54
,
78
83
(
2016
).
25.
J.
Vankka
and
K. A.
Halonen
,
Direct Digital Synthesizers: Theory, Design and Applications
(
Springer Science & Business Media
,
2001
), Vol.
614
.
26.
X.
Liang
,
S.
Binghe
,
M.
Yueping
, and
Z.
Ruyan
, “
A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array
,”
Rev. Sci. Instrum.
84
,
054702
(
2013
).
27.
S. N.
Williams
,
P.
McElhinney
, and
S.
Gunamony
, “
Ultra-high field MRI: Parallel-transmit arrays and RF pulse design
,”
Phys. Med. Biol.
68
,
02TR02
(
2023
).
28.
C. M.
Deniz
, “
Parallel transmission for ultrahigh field MRI
,”
Top. Magn. Reson. Imaging
28
,
159
171
(
2019
).
29.
S. A.
Winkler
,
F.
Schmitt
,
H.
Landes
,
J.
de Bever
,
T.
Wade
,
A.
Alejski
, and
B. K.
Rutt
, “
Gradient and shim technologies for ultra high field MRI
,”
Neuroimage
168
,
59
70
(
2018
).
30.
W.
Tang
and
W.
Wang
, “
Highly integrated gradient pulse generator for magnetic resonance imaging system
,”
Concepts Magn. Reson., Part B
39B
,
59
63
(
2011
).
31.
M.
Terpstra
,
P. M.
Andersen
, and
R.
Gruetter
, “
Localized eddy current compensation using quantitative field mapping
,”
J. Magn. Reson.
131
,
139
143
(
1998
).
32.
N.
Kodama
and
K.
Kose
, “
Echo-planar imaging for a 9.4 Tesla vertical-bore superconducting magnet using an unshielded gradient coil
,”
Magn. Reson. Med. Sci.
15
,
395
404
(
2016
).
33.
K.
Bartusek
,
R.
Kubasek
, and
P.
Fiala
, “
Determination of pre-emphasis constants for eddy current reduction
,”
Meas. Sci. Technol.
21
,
105601
(
2010
).
34.
J.
Hamilton
,
D.
Franson
, and
N.
Seiberlich
, “
Recent advances in parallel imaging for MRI
,”
Prog. Nucl. Magn. Reson. Spectrosc.
101
,
71
95
(
2017
).
You do not currently have access to this content.