Fourier-transform infrared spectroscopy (FTIR) is a powerful analytical method not only for the chemical identification of solid, liquid, and gas species but also for the quantification of their concentration. However, the chemical quantification capability of FTIR is significantly hindered when the analyte is surrounded by a strong IR absorbing medium, such as liquid solutions. To overcome this limit, here we develop an IR fiber microprobe that can be inserted into a liquid medium and obtain full FTIR spectra at points of interest. To benchmark this endoscopic FTIR method, we insert the microprobe into bulk water covering a ZnSe substrate and measure the IR transmittance of water as a function of the probe–substrate distance. The obtained vibrational modes, overall transmittance vs z profiles, quantitative absorption coefficients, and micro z-section IR transmittance spectra are all consistent with the standard IR absorption properties of water. The results pave the way for endoscopic chemical profiling inside bulk liquid solutions, promising for applications in many biological, chemical, and electrochemical systems.

1.
J.
Haas
and
B.
Mizaikoff
, “
Advances in mid-infrared spectroscopy for chemical analysis
,”
Annu. Rev. Anal. Chem.
9
(
1
),
45
68
(
2016
).
2.
M.
Hlavatsch
,
A.
Teuber
,
M.
Eisele
, and
B.
Mizaikoff
, “
Sensing liquid- and gas-phase hydrocarbons via mid-infrared broadband femtosecond laser source spectroscopy
,”
ACS Meas. Sci. Au
3
(
6
),
452
458
(
2023
).
3.
V. A.
Lorenz-Fonfria
, “
Infrared difference spectroscopy of proteins: From bands to bonds
,”
Chem. Rev.
120
(
7
),
3466
3576
(
2020
).
4.
M. O.
Guerrero-Pérez
and
G. S.
Patience
, “
Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR
,”
Can. J. Chem. Eng.
98
(
1
),
25
33
(
2020
).
5.
I. A.
Mudunkotuwa
,
A. A.
Minshid
, and
V. H.
Grassian
, “
ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media
,”
Analyst
139
(
5
),
870
881
(
2014
).
6.
Z.
Movasaghi
,
S.
Rehman
, and
I. U.
Rehman
, “
Fourier transform infrared (FTIR) spectroscopy of biological tissues
,”
Appl. Spectrosc. Rev.
43
(
2
),
134
179
(
2008
).
7.
C.
Corsi
, “
Infrared: A key technology for security systems
,”
Adv. Opt.l Technol.
2012
,
1
15
.
8.
D.-W.
Sun
,
Infrared Spectroscopy for Food Quality Analysis and Control
, 1st ed. (
Academic Press
,
Burlington, MA
,
2009
).
9.
D.
Brissinger
,
G.
Parent
, and
P.
Boulet
, “
Experimental study on radiation attenuation by a water film
,”
J. Quant. Spectrosc. Radiat. Transfer
145
,
160
168
(
2014
).
10.
K.
Rahmelow
and
W.
Hübner
, “
Infrared spectroscopy in aqueous solution: Difficulties and accuracy of water subtraction
,”
Appl. Spectrosc.
51
(
2
),
160
170
(
1997
).
11.
P. S.
Fomina
,
M. A.
Proskurnin
,
B.
Mizaikoff
, and
D. S.
Volkov
, “
Infrared spectroscopy in aqueous solutions: Capabilities and challenges
,”
Crit. Rev. Anal. Chem.
53
(
8
),
1748
1765
(
2023
).
12.
F.
Zaera
, “
Probing liquid/solid interfaces at the molecular level
,”
Chem. Rev.
112
(
5
),
2920
2986
(
2012
).
13.
T.
Buffeteau
,
J.
Grondin
, and
J.-C.
Lassègues
, “
Infrared spectroscopy of ionic liquids: Quantitative aspects and determination of optical constants
,”
Appl. Spectrosc.
64
(
1
),
112
119
(
2010
).
14.
J. M.
Porter
,
J. B.
Jeffries
, and
R. K.
Hanson
, “
Mid-infrared absorption measurements of liquid hydrocarbon fuels near
,”
J. Quant. Spectrosc. Radiat. Transfer
110
(
18
),
2135
2147
(
2009
).
15.
G. M.
Hale
and
M. R.
Querry
, “
Optical constants of water in the 200-nm to 200-μm wavelength region
,”
Appl. Opt.
12
(
3
),
555
(
1973
).
16.
V. J.
Ovalle
,
Y.-S.
Hsu
,
N.
Agrawal
,
M. J.
Janik
, and
M. M.
Waegele
, “
Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au
,”
Nat. Catal.
5
(
7
),
624
632
(
2022
).
17.
H.
Zhang
,
B.
Chen
,
T.
Liu
,
G. W.
Brudvig
,
D.
Wang
, and
M. M.
Waegele
, “
Infrared spectroscopic observation of oxo- and superoxo-intermediates in the water oxidation cycle of a molecular Ir catalyst
,”
J. Am. Chem. Soc.
146
(
1
),
878
883
(
2024
).
18.
G.
Li
,
Z.-C.
An
,
J.
Yang
,
J.-H.
Zheng
,
L.-F.
Ji
,
J.-M.
Zhang
,
J.-Y.
Ye
,
B.-W.
Zhang
,
Y.-X.
Jiang
, and
S.-G.
Sun
, “
Revealing surface fine structure on Pt Au catalysts by an in situ ATR-SEIRAS CO-probe method
,”
J. Mater. Chem. A
11
(
26
),
14043
14051
(
2023
).
19.
H.
Kaur
,
B.
Rana
,
D.
Tomar
,
S.
Kaur
, and
K. C.
Jena
, “
Fundamentals of ATR-FTIR spectroscopy and its role for probing in-situ molecular-level interactions
,” in
Modern Techniques of Spectroscopy
, edited by
D. K.
Singh
,
M.
Pradhan
, and
A.
Materny
(
Springer
,
Singapore
,
2021
), pp.
3
37
.
20.
B.
Byrne
,
J. W.
Beattie
,
C. L.
Song
, and
S. G.
Kazarian
, “
ATR-FTIR spectroscopy and spectroscopic imaging of proteins
,” in
Vibrational Spectroscopy Protein Research
(
Elsevier
,
2020
), pp.
1
22
.
21.
B. T.
O’Callahan
,
K.-D.
Park
,
I. V.
Novikova
,
T.
Jian
,
C.-L.
Chen
,
E. A.
Muller
,
P. Z.
El-Khoury
,
M. B.
Raschke
, and
A. S.
Lea
, “
In liquid infrared scattering scanning near-field optical microscopy for chemical and biological nanoimaging
,”
Nano Lett.
20
(
6
),
4497
4504
(
2020
).
22.
H.
Wang
,
J. M.
González-Fialkowski
,
W.
Li
,
Q.
Xie
,
Y.
Yu
, and
X. G.
Xu
, “
Liquid-phase peak force infrared microscopy for chemical nanoimaging and spectroscopy
,”
Anal. Chem.
93
(
7
),
3567
3575
(
2021
).
23.
H.
Wang
,
E.
Janzen
,
L.
Wang
,
J. H.
Edgar
, and
X. G.
Xu
, “
Probing mid-infrared phonon polaritons in the aqueous phase
,”
Nano Lett.
20
(
5
),
3986
3991
(
2020
).
24.
Y.-H.
Lu
,
J. M.
Larson
,
A.
Baskin
,
X.
Zhao
,
P. D.
Ashby
,
D.
Prendergast
,
H. A.
Bechtel
,
R.
Kostecki
, and
M.
Salmeron
, “
Infrared nanospectroscopy at the graphene–electrolyte interface
,”
Nano Lett.
19
(
8
),
5388
5393
(
2019
).
25.
L.
Xiao
and
Z. D.
Schultz
, “
Spectroscopic imaging at the nanoscale: Technologies and recent applications
,”
Anal. Chem.
90
(
1
),
440
458
(
2018
).
26.
Y.
Shan
,
X.
Zhao
,
M.
Fonseca Guzman
,
A.
Jana
,
S.
Chen
,
S.
Yu
,
K. C.
Ng
,
I.
Roh
,
H.
Chen
,
V.
Altoe
,
S. N.
Gilbert Corder
,
H. A.
Bechtel
,
J.
Qian
,
M. B.
Salmeron
, and
P.
Yang
, “
Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface
,”
Nat. Catal.
7
(
4
),
422
431
(
2024
).
27.
E.
Pfitzner
and
J.
Heberle
, “
Infrared scattering-type scanning near-field optical microscopy of biomembranes in water
,”
J. Phys. Chem. Lett.
11
(
19
),
8183
8188
(
2020
).
28.
J.
Doherty
,
Z.
Zhang
,
K.
Wehbe
,
G.
Cinque
,
P.
Gardner
, and
J.
Denbigh
, “
Increased optical pathlength through aqueous media for the infrared microanalysis of live cells
,”
Anal. Bioanal. Chem.
410
(
23
),
5779
5789
(
2018
).
29.
J.
Doherty
,
A.
Raoof
,
A.
Hussain
,
M.
Wolna
,
G.
Cinque
,
M.
Brown
,
P.
Gardner
, and
J.
Denbigh
, “
Live single cell analysis using synchrotron FTIR microspectroscopy: Development of a simple dynamic flow system for prolonged sample viability
,”
Analyst
144
(
3
),
997
1007
(
2019
).
30.
H.
Yang
,
S.
Yang
,
J.
Kong
,
A.
Dong
, and
S.
Yu
, “
Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy
,”
Nat. Protoc.
10
(
3
),
382
396
(
2015
).
31.
E. W. K.
Young
and
D. J.
Beebe
, “
Fundamentals of microfluidic cell culture in controlled microenvironments
,”
Chem. Soc. Rev.
39
(
3
),
1036
(
2010
).
32.
T. F.
Beskers
,
M.
Brandstetter
,
J.
Kuligowski
,
G.
Quintás
,
M.
Wilhelm
, and
B.
Lendl
, “
High performance liquid chromatography with mid-infrared detection based on a broadly tunable quantum cascade laser
,”
Analyst
139
(
9
),
2057
(
2014
).
33.
A.
Schwaighofer
,
M.
Brandstetter
, and
B.
Lendl
, “
Quantum cascade lasers (QCLs) in biomedical spectroscopy
,”
Chem. Soc. Rev.
46
(
19
),
5903
5924
(
2017
).
34.
N. S.
Kapany
and
R. J.
Simms
, “
Recent developments in infrared fiber optics
,”
Infrared Phys.
5
(
2
),
69
80
(
1965
).
35.
J.
Wang
,
G.
Wu
,
Z.
Feng
,
J.
Wang
,
Y.
Wang
,
K.
Jiao
,
X.
Wang
,
S.
Bai
,
P.
Zhang
,
Z.
Zhao
,
R.
Wang
,
X.
Wang
, and
Q.
Nie
, “
Se-H-free As2Se3 fiber and its spectral applications in the mid-infrared
,”
Opt. Express
30
(
13
),
24072
(
2022
).
36.
Y.
Wang
,
K.
Jiao
,
X.
Liang
,
J.
Jia
,
N.
Li
,
S.
Bai
,
X.
Wang
,
Z.
Zhao
,
Z.
Liu
,
P.
Zhang
,
S.
Dai
,
Q.
Nie
, and
R.
Wang
, “
Fabrication of mid-IR As-Se chalcogenide glass and fiber with low scattering loss
,”
J. Lightwave Technol.
42
(
9
),
3338
3345
(
2024
).
37.
V.
Artyushenko
,
A.
Bocharnikov
,
T.
Sakharova
, and
I.
Usenov
, “
Mid‐infrared fiber optics for 1–18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing
,”
Opt. Photonik
9
(
4
),
35
39
(
2014
).
38.
E. M.
Dianov
,
V. G.
Plotnichenko
,
G. G.
Devyatykh
,
M. F.
Churbanov
, and
I. V.
Scripachev
, “
Middle-infrared chalcogenide glass fibers with losses lower than 100 db km−1
,”
Infrared Phys.
29
(
2–4
),
303
307
(
1989
).
39.
C.
You
,
S.
Dai
,
P.
Zhang
,
Y.
Xu
,
Y.
Wang
,
D.
Xu
, and
R.
Wang
, “
Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses
,”
Sci. Rep.
7
(
1
),
6497
(
2017
).
40.
S.
Danto
,
M.
Dubernet
,
B.
Giroire
,
J. D.
Musgraves
,
P.
Wachtel
,
T.
Hawkins
,
J.
Ballato
, and
K.
Richardson
, “
Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength
,”
Mater. Res. Bull.
49
,
250
258
(
2014
).
41.
W. H.
Kim
,
V. Q.
Nguyen
,
L. B.
Shaw
,
L. E.
Busse
,
C.
Florea
,
D. J.
Gibson
,
R. R.
Gattass
,
S. S.
Bayya
,
F. H.
Kung
,
G. D.
Chin
,
R. E.
Miklos
,
I. D.
Aggarwal
, and
J. S.
Sanghera
, “
Recent progress in chalcogenide fiber technology at NRL
,”
J. Non-Cryst. Solids
431
,
8
15
(
2016
).
42.
P.
Lucas
,
A. A.
Wilhelm
,
M.
Videa
,
C.
Boussard-Plédel
, and
B.
Bureau
, “
Chemical stability of chalcogenide infrared glass fibers
,”
Corros. Sci.
50
(
7
),
2047
2052
(
2008
).
43.
B.
Hecht
,
B.
Sick
,
U. P.
Wild
,
V.
Deckert
,
R.
Zenobi
,
O. J. F.
Martin
, and
D. W.
Pohl
, “
Scanning near-field optical microscopy with aperture probes: Fundamentals and applications
,”
J. Chem. Phys.
112
(
18
),
7761
7774
(
2000
).
44.
W.
Bao
,
M.
Melli
,
N.
Caselli
,
F.
Riboli
,
D. S.
Wiersma
,
M.
Staffaroni
,
H.
Choo
,
D. F.
Ogletree
,
S.
Aloni
,
J.
Bokor
,
S.
Cabrini
,
F.
Intonti
,
M. B.
Salmeron
,
E.
Yablonovitch
,
P. J.
Schuck
, and
A.
Weber-Bargioni
, “
Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging
,”
Science
338
(
6112
),
1317
1321
(
2012
).
45.
S.
Sabbatini
,
C.
Conti
,
G.
Orilisi
, and
E.
Giorgini
, “
Infrared spectroscopy as a new tool for studying single living cells: Is there a niche?
,”
Biomed. Spectrosc. Imaging
6
(
3–4
),
85
99
(
2017
).
46.
M. J.
Baker
,
J.
Trevisan
,
P.
Bassan
,
R.
Bhargava
,
H. J.
Butler
,
K. M.
Dorling
,
P. R.
Fielden
,
S. W.
Fogarty
,
N. J.
Fullwood
,
K. A.
Heys
,
C.
Hughes
,
P.
Lasch
,
P. L.
Martin-Hirsch
,
B.
Obinaju
,
G. D.
Sockalingum
,
J.
Sulé-Suso
,
R. J.
Strong
,
M. J.
Walsh
,
B. R.
Wood
,
P.
Gardner
, and
F. L.
Martin
, “
Using Fourier transform IR spectroscopy to analyze biological materials
,”
Nat. Protoc.
9
(
8
),
1771
1791
(
2014
).
47.
L.
Vaccari
,
G.
Birarda
,
L.
Businaro
,
S.
Pacor
, and
G.
Grenci
, “
Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): Toward a powerful label-free cell-based assay
,”
Anal. Chem.
84
(
11
),
4768
4775
(
2012
).
48.
C.
Gervillié-Mouravieff
,
C.
Boussard-Plédel
,
J.
Huang
,
C.
Leau
,
L. A.
Blanquer
,
M. B.
Yahia
,
M.-L.
Doublet
,
S. T.
Boles
,
X. H.
Zhang
,
J. L.
Adam
, and
J.-M.
Tarascon
, “
Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries
,”
Nat. Energy
7
(
12
),
1157
1169
(
2022
).
49.
M. M.
Amaral
,
C. G.
Real
,
V. Y.
Yukuhiro
,
G.
Doubek
,
P. S.
Fernandez
,
G.
Singh
, and
H.
Zanin
, “
In situ and operando infrared spectroscopy of battery systems: Progress and opportunities
,”
J. Energy Chem.
81
,
472
491
(
2023
).
50.
J.-T.
Li
,
Z.-Y.
Zhou
,
I.
Broadwell
, and
S.-G.
Sun
, “
In-situ infrared spectroscopic studies of electrochemical energy conversion and storage
,”
Acc. Chem. Res.
45
(
4
),
485
494
(
2012
).
51.
J.
Kim
,
F.
Zhao
,
S.
Zhou
,
K. S.
Panse
, and
Y.
Zhang
, “
Spectroscopic investigation of the structure of a pyrrolidinium-based ionic liquid at electrified interfaces
,”
J. Chem. Phys.
156
(
11
),
114701
(
2022
).
52.
J.
Matsuura
,
A.
Sheelam
, and
Y.
Zhang
, “
Tandem supported, high metal-loading, non-PGM electrocatalysts for oxygen reduction reaction
,”
APL Energy
2
(
2
),
026103
(
2024
).
53.
F.
Zhao
,
S.
Zhou
, and
Y.
Zhang
, “
Ultrasensitive detection of hydrogen peroxide using Bi2Te3 electrochemical sensors
,”
ACS Appl. Mater. Interfaces
13
(
3
),
4761
4767
(
2021
).
54.
E.
Groppo
,
S.
Rojas-Buzo
, and
S.
Bordiga
, “
The role of in situ/operando IR spectroscopy in unraveling adsorbate-induced structural changes in heterogeneous catalysis
,”
Chem. Rev.
123
(
21
),
12135
12169
(
2023
).
55.
C.
Lamberti
,
A.
Zecchina
,
E.
Groppo
, and
S.
Bordiga
, “
Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy
,”
Chem. Soc. Rev.
39
(
12
),
4951
(
2010
).
56.
J.
Zhao
,
X.
Zhang
,
J.
Xu
,
W.
Tang
,
Z.
Lin Wang
, and
F.
Ru Fan
, “
Contact-electro-catalysis for direct synthesis of H2O2 under ambient conditions
,”
Angew. Chem., Int. Ed.
62
(
21
),
e202300604
(
2023
).
57.
Z.
Wang
,
H. N.
Fernández-Escamilla
,
J.
Guerrero-Sánchez
,
N.
Takeuchi
, and
F.
Zaera
, “
Adsorption and reactivity of chiral modifiers in heterogeneous catalysis: 1-(1-naphthyl)ethylamine on Pt surfaces
,”
ACS Catal.
12
(
17
),
10514
10521
(
2022
).
58.
L. K. S.
Bonagiri
,
K. S.
Panse
,
S.
Zhou
,
H.
Wu
,
N. R.
Aluru
, and
Y.
Zhang
, “
Real-space charge density profiling of electrode–electrolyte interfaces with angstrom depth resolution
,”
ACS Nano
16
(
11
),
19594
19604
(
2022
).
59.
S.
Zhou
,
K. S.
Panse
,
M. H.
Motevaselian
,
N. R.
Aluru
, and
Y.
Zhang
, “
Three-dimensional molecular mapping of ionic liquids at electrified interfaces
,”
ACS Nano
14
(
12
),
17515
17523
(
2020
).
60.
K. S.
Panse
,
H.
Wu
,
S.
Zhou
,
F.
Zhao
,
N. R.
Aluru
, and
Y.
Zhang
, “
Innermost ion association configuration is a key structural descriptor of ionic liquids at electrified interfaces
,”
J. Phys. Chem. Lett.
13
(
40
),
9464
9472
(
2022
).
61.
K. S.
Panse
,
S.
Zhou
, and
Y.
Zhang
, “
3D mapping of the structural transitions in wrinkled 2D membranes: Implications for reconfigurable electronics, memristors, and bioelectronic interfaces
,”
ACS Appl. Nano Mater.
2
(
9
),
5779
5786
(
2019
).
62.
L. K. S.
Bonagiri
,
Z.
Wang
,
S.
Zhou
, and
Y.
Zhang
, “
Precise surface profiling at the nanoscale enabled by deep learning
,”
Nano Lett.
24
(
8
),
2589
2595
(
2024
).
63.
L.
Lin
,
Y.
Ge
,
H.
Zhang
,
M.
Wang
,
D.
Xiao
, and
D.
Ma
, “
Heterogeneous catalysis in water
,”
JACS Au
1
(
11
),
1834
1848
(
2021
).
64.
M.
Cortes-Clerget
,
J.
Yu
,
J. R. A.
Kincaid
,
P.
Walde
,
F.
Gallou
, and
B. H.
Lipshutz
, “
Water as the reaction medium in organic chemistry: From our worst enemy to our best friend
,”
Chem. Sci.
12
(
12
),
4237
4266
(
2021
).
65.
B. L.
Dargaville
and
D. W.
Hutmacher
, “
Water as the often neglected medium at the interface between materials and biology
,”
Nat. Commun.
13
(
1
),
4222
(
2022
).
66.
P. M.
Wiggins
, “
Role of water in some biological processes
,”
Microbiol. Rev.
54
(
4
),
432
449
(
1990
).
67.
J.
Li
,
J.
Guo
, and
H.
Dai
, “
Probing dissolved CO2(aq) in aqueous solutions for CO2 electroreduction and storage
,”
Sci. Adv.
8
(
19
),
eabo0399
(
2022
).
68.
N.
Kitadai
,
T.
Yokoyama
, and
S.
Nakashima
, “
Temperature dependence of molecular structure of dissolved glycine as revealed by ATR-IR spectroscopy
,”
J. Mol. Struct.
981
(
1–3
),
179
186
(
2010
).
69.
I. M.
McIntosh
,
A. R. L.
Nichols
,
K.
Tani
, and
E. W.
Llewellin
, “
Accounting for the species-dependence of the 3500 cm−1 H2Ot infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses
,”
Am. Mineral.
102
(
8
),
1677
1689
(
2017
).
70.
H.
Wijnja
and
C. P.
Schulthess
, “
ATR–FTIR and DRIFT spectroscopy of carbonate species at the aged γ-Al2O3/water interface
,”
Spectrochim. Acta, Part A
55
(
4
),
861
872
(
1999
).
71.
A. E.
Klingbeil
,
J. B.
Jeffries
, and
R. K.
Hanson
, “
Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons
,”
J. Quant. Spectrosc. Radiat. Transfer
107
(
3
),
407
420
(
2007
).
72.
S. Y.
Venyaminov
and
F. G.
Prendergast
, “
Water (H2O and D2O) molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions
,”
Anal. Biochem.
248
(
2
),
234
245
(
1997
).
73.
J.
Kim
,
U. W.
Schmitt
,
J. A.
Gruetzmacher
,
G. A.
Voth
, and
N. E.
Scherer
, “
The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis
,”
J. Chem. Phys.
116
(
2
),
737
746
(
2002
).
74.
A. B.
McCoy
, “
The role of electrical anharmonicity in the association band in the water spectrum
,”
J. Phys. Chem. B
118
(
28
),
8286
8294
(
2014
).
75.
X.
Lu
,
C.
Zhu
,
Z.
Wu
,
J.
Xuan
,
J. S.
Francisco
, and
H.
Wang
, “
In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte
,”
J. Am. Chem. Soc.
142
(
36
),
15438
15444
(
2020
).
76.
H. H.
Heenen
,
H. S.
Pillai
,
K.
Reuter
, and
V. J.
Bukas
, “
Exploring mesoscopic mass transport effects on electrocatalytic selectivity
,”
Nat. Catal.
7
(
7
),
847
854
(
2024
).
77.
B.
Chen
,
Y.
Xia
,
R.
He
,
H.
Sang
,
W.
Zhang
,
J.
Li
,
L.
Chen
,
P.
Wang
,
S.
Guo
,
Y.
Yin
,
L.
Hu
,
M.
Song
,
Y.
Liang
,
Y.
Wang
,
G.
Jiang
, and
R. N.
Zare
, “
Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
32
),
e2209056119
(
2022
).
78.
Y.
Zhang
,
S.
Zhan
,
K.
Liu
,
M.
Qiao
,
N.
Liu
,
R.
Qin
,
L.
Xiao
,
P.
You
,
W.
Jing
, and
N.
Zheng
, “
Heterogeneous hydrogenation with hydrogen spillover enabled by nitrogen vacancies on boron nitride-supported Pd nanoparticles
,”
Angew. Chem., Int. Ed.
62
(
9
),
e202217191
(
2023
).
79.
L.
Khalafi
,
N.
Nikzad
,
A.
Alhajeri
,
B.
Bacon
,
K.
Alvarado
, and
M.
Rafiee
, “
Electrochemistry under microscope: Observing the diffusion layer and measuring diffusion coefficient
,”
J. Chem. Educ.
100
(
10
),
4056
4061
(
2023
).
80.
R. C.
Engstrom
,
M.
Weber
,
D. J.
Wunder
,
R.
Burgess
, and
S.
Winquist
, “
Measurements within the diffusion layer using a microelectrode probe
,”
Anal. Chem.
58
(
4
),
844
848
(
1986
).
81.
S. M.
Oja
and
B.
Zhang
, “
Imaging transient formation of diffusion layers with fluorescence-enabled electrochemical microscopy
,”
Anal. Chem.
86
(
24
),
12299
12307
(
2014
).
82.
X.
Lang
,
L.
Shi
,
Z.
Zhao
, and
W.
Min
, “
Probing the structure of water in individual living cells
,”
Nat. Commun.
15
(
1
),
5271
(
2024
).
83.
J. T.
King
,
E. J.
Arthur
,
C. L.
Brooks
, and
K. J.
Kubarych
, “
Crowding induced collective hydration of biological macromolecules over extended distances
,”
J. Am. Chem. Soc.
136
(
1
),
188
194
(
2014
).
You do not currently have access to this content.