High-frequency technological low-temperature plasmas play a key role in various industrial processes of high societal relevance, such as semiconductor manufacturing and gas conversion. Due to their complexity, the fundamentals of their operation are typically not understood and process development is done empirically. The continuous increase in process requirements with respect to precision and reproducibility, however, necessitates knowledge-based approaches toward process development and monitoring. Diagnostic techniques used for this should be non-invasive, have short measuring times, and have low equipment costs. A valuable tool to understand plasma processes is to measure the spatio-temporally resolved dynamics of energetic electrons with phase resolved optical emission spectroscopy (PROES), as these electrons generate the plasma through ionization and reactive radicals through dissociation of the neutral gas. However, PROES is typically performed based on expensive intensified charge-coupled device (ICCD) cameras, is slow, and requires large windows for optical access to the plasma, which do not exist in commercial reactors. To overcome these limitations, we present a modified version of this diagnostic, Fiber PROES, which is based on an optical fiber in combination with a photo-multiplier tube operated in a photon-counting mode. Compared to classical PROES, only a small fiber access port is required, which is typically available in commercial plasma reactors, the costs are strongly reduced, and the measurement speed is increased. We demonstrate that Fiber PROES yields similar results compared to classical ICCD-camera-based PROES by comparing measurements taken in geometrically symmetric capacitively coupled radio frequency plasma based on both PROES variants.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons, Inc.
,
2005
).
2.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
3.
T.
Makabe
and
Z. L.
Petrovic
,
Plasma Electronics
, 2nd ed. (
CRC Press
,
2014
).
4.
R.
Snoeckx
and
A.
Bogaerts
,
Chem. Soc. Rev.
46
,
5805
(
2017
).
5.
L.
Schücke
,
J.-L.
Gembus
,
N.
Peters
,
F.
Kogelheide
,
R. T.
Nguyen-Smith
,
A. R.
Gibson
,
J.
Schulze
,
M.
Muhler
, and
P.
Awakowicz
,
Plasma Sources Sci. Technol.
29
,
114003
(
2020
).
6.
K.-D.
Weltmann
and
T.
von Woedtke
,
Plasma Phys. Controlled Fusion
59
,
014031
(
2016
).
7.
I.
Korolov
,
D.
Steuer
,
L.
Bischoff
,
G.
Hübner
,
Y.
Liu
,
V.
Schulz-von der Gathen
,
M.
Böke
,
T.
Mussenbrock
, and
J.
Schulze
,
J. Phys. D: Appl. Phys.
54
,
125203
(
2021
).
8.
R.
Snyders
,
D.
Hegemann
,
D.
Thiry
,
O.
Zabeida
,
J.
Klemberg-Sapieha
, and
L.
Martinu
,
Plasma Sources Sci. Technol.
32
,
074001
(
2023
).
10.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
11.
H. C. M.
Knoops
,
T.
Faraz
,
K.
Arts
, and
W. M. M. E.
Kessels
,
J. Vac. Sci. Technol. A
37
,
030902
(
2019
).
12.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
13.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
14.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
15.
S.
Yu
,
Z.
Chen
,
J.
Xu
,
H.
Wang
,
L.
Wang
,
Z.
Wang
,
W.
Jiang
,
J.
Schulze
, and
Y.
Zhang
,
J. Phys. D: Appl. Phys.
57
,
475204
(
2024
).
16.
F.
Schmidt
,
J.
Schulze
,
E.
Johnson
,
J.-P.
Booth
,
D.
Keil
,
D. M.
French
,
J.
Trieschmann
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
27
,
095012
(
2018
).
17.
Z.
Donkó
,
J.
Schulze
,
U.
Czarnetzki
,
A.
Derzsi
,
P.
Hartmann
,
I.
Korolov
, and
E.
Schüngel
,
Plasma Phys. Controlled Fusion
54
,
124003
(
2012
).
18.
S.
Rauf
and
A.
Balakrishna
,
J. Vac. Sci. Technol. A
35
,
021308
(
2017
).
19.
P.
Hartmann
,
L.
Wang
,
K.
Nösges
,
B.
Berger
,
S.
Wilczek
,
R. P.
Brinkmann
,
T.
Mussenbrock
,
Z.
Juhasz
,
Z.
Donkó
,
A.
Derzsi
,
E.
Lee
, and
J.
Schulze
,
J. Phys. D: Appl. Phys.
54
,
255202
(
2021
).
20.
F.
Krüger
,
S.
Wilczek
,
T.
Mussenbrock
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
28
,
075017
(
2019
).
21.
F.
Krüger
,
H.
Lee
,
S. K.
Nam
, and
M. J.
Kushner
,
Phys. Plasmas
31
,
033508
(
2024
).
22.
F.
Krüger
,
D.
Zhang
,
P.
Luan
,
M.
Park
,
A.
Metz
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
42
,
043008
(
2024
).
23.
H.-C.
Lee
,
Appl. Phys. Rev.
5
,
011108
(
2018
).
24.
B.
Wu
,
A.
Kumar
, and
S.
Pamarthy
,
J. Appl. Phys.
108
,
051101
(
2010
).
25.
C.
Charles
,
J. Phys. D: Appl. Phys.
42
,
163001
(
2009
).
26.
H.
Sekine
,
H.
Koizumi
, and
K.
Komurasaki
,
Phys. Plasmas
31
,
070703
(
2024
).
27.
K.
Han
,
E. S.
Yoon
,
J.
Lee
,
H.
Chae
,
K. H.
Han
, and
K. J.
Park
,
Ind. Eng. Chem. Res.
47
,
3907
(
2008
).
28.
S.
Siepa
,
S.
Danko
,
T. V.
Tsankov
,
T.
Mussenbrock
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
47
,
445201
(
2014
).
29.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
,
J. Appl. Phys.
73
,
3657
(
1993
).
30.
J.-H.
Kim
,
D.-J.
Seong
,
J.-Y.
Lim
, and
K.-H.
Chung
,
Appl. Phys. Lett.
83
,
4725
(
2003
).
31.
R. B.
Piejak
,
J.
Al-Kuzee
, and
N. S. J.
Braithwaite
,
Plasma Sources Sci. Technol.
14
,
734
(
2005
).
32.
M.
Lapke
,
T.
Mussenbrock
, and
R. P.
Brinkmann
,
Appl. Phys. Lett.
93
,
051502
(
2008
).
33.
D.
Gahan
,
B.
Dolinaj
, and
M. B.
Hopkins
,
Rev. Sci. Instrum.
79
,
033502
(
2008
).
34.
T.
Faraz
,
Y. G.
Verstappen
,
M. A.
Verheijen
,
N. J.
Chittock
,
J. E.
Lopez
,
E.
Heijdra
,
W. J.
van Gennip
,
W. M. M.
Kessels
, and
A. J.
Mackus
,
J. Appl. Phys.
128
,
213301
(
2020
).
35.
J.
Benedikt
,
A.
Hecimovic
,
D.
Ellerweg
, and
A.
von Keudell
,
J. Phys. D: Appl. Phys.
45
,
403001
(
2012
).
36.
H. F.
Döbele
,
T.
Mosbach
,
K.
Niemi
, and
V.
Schulz-von der Gathen
,
Plasma Sources Sci. Technol.
14
,
S31
(
2005
).
37.
K. J.
Kanarik
,
J. Vac. Sci. Technol. A
38
,
031004
(
2020
).
38.
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
,
Appl. Phys. Lett.
100
,
024102
(
2012
).
39.
T.
Gans
,
C. C.
Lin
,
V.
Schulz–von der Gathen
, and
H. F.
Döbele
,
Phys. Rev. A
67
,
012707
(
2003
).
40.
U.
Czarnetzki
,
D.
Luggenhölscher
, and
H. F.
Döbele
,
Plasma Sources Sci. Technol.
8
,
230
(
1999
).
41.
B.
Bruneau
,
T.
Gans
,
D.
O’Connell
,
A.
Greb
,
E. V.
Johnson
, and
J.-P.
Booth
,
Phys. Rev. Lett.
114
,
125002
(
2015
).
42.
C.-W.
Park
,
B.
Horváth
,
A.
Derzsi
,
J.
Schulze
,
J. H.
Kim
,
Z.
Donkó
, and
H.-C.
Lee
,
Plasma Sources Sci. Technol.
32
,
115003
(
2023
).
43.
J.
Schulze
,
E.
Schüngel
,
Z.
Donkó
,
D.
Luggenhölscher
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
43
,
124016
(
2010
).
44.
T.
Gans
,
V.
Schulz-von der Gathen
, and
H. F.
Döbele
,
Europhys. Lett.
66
,
232
(
2004
).
45.
P.
Ahr
,
E.
Schüngel
,
J.
Schulze
,
T. V.
Tsankov
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
24
,
044006
(
2015
).
46.
B.
Berger
,
T.
Steinberger
,
E.
Schüngel
,
M.
Koepke
,
T.
Mussenbrock
,
P.
Awakowicz
, and
J.
Schulze
,
Appl. Phys. Lett.
111
,
201601
(
2017
).
47.
P.
Belenguer
and
J. P.
Boeuf
,
Phys. Rev. A
41
,
4447
(
1990
).
48.
B.
Horváth
,
J.
Schulze
,
Z.
Donkó
, and
A.
Derzsi
,
J. Phys. D: Appl. Phys.
51
,
355204
(
2018
).
49.
G.-H.
Liu
,
Y.-X.
Liu
,
L.-S.
Bai
,
K.
Zhao
, and
Y.-N.
Wang
,
Phys. Plasmas
25
,
023515
(
2018
).
50.
J.
Schulze
,
A.
Derzsi
,
K.
Dittmann
,
T.
Hemke
,
J.
Meichsner
, and
Z.
Donkó
,
Phys. Rev. Lett.
107
,
275001
(
2011
).
51.
G.-H.
Liu
,
Y.-X.
Liu
,
D.-Q.
Wen
, and
Y.-N.
Wang
,
Plasma Sources Sci. Technol.
24
,
034006
(
2015
).
52.
M.
Daksha
,
B.
Berger
,
E.
Schuengel
,
I.
Korolov
,
A.
Derzsi
,
M.
Koepke
,
Z.
Donkó
, and
J.
Schulze
,
J. Phys. D: Appl. Phys.
49
,
234001
(
2016
).
53.
D. A.
Schulenberg
,
I.
Korolov
,
Z.
Donkó
,
A.
Derzsi
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
30
,
105003
(
2021
).
54.
J.
Schulze
,
T.
Gans
,
D.
O’Connell
,
U.
Czarnetzki
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
40
,
7008
(
2007
).
55.
C.
Woelfel
,
M.
Oberberg
,
B.
Berger
,
D.
Engel
,
R. P.
Brinkmann
,
P.
Awakowicz
,
J.
Lunze
, and
J.
Schulze
,
J. Instrum.
14
(
10
),
P10007
(
2019
).
56.
D. B.
Graves
,
C. B.
Labelle
,
M. J.
Kushner
,
E. S.
Aydil
,
V. M.
Donnelly
,
J. P.
Chang
,
P.
Mayer
,
L.
Overzet
,
S.
Shannon
,
S.
Rauf
, and
D. N.
Ruzic
,
J. Vac. Sci. Technol. B
42
,
042202
(
2024
).
57.
G. S.
Oehrlein
,
S. M.
Brandstadter
,
R. L.
Bruce
,
J. P.
Chang
,
J. C.
DeMott
,
V. M.
Donnelly
,
R.
Dussart
,
A.
Fischer
,
R. A.
Gottscho
,
S.
Hamaguchi
,
M.
Honda
,
M.
Hori
,
K.
Ishikawa
,
S. G.
Jaloviar
,
K. J.
Kanarik
,
K.
Karahashi
,
A.
Ko
,
H.
Kothari
,
N.
Kuboi
,
M. J.
Kushner
,
T.
Lill
,
P.
Luan
,
A.
Mesbah
,
E.
Miller
,
S.
Nath
,
Y.
Ohya
,
M.
Omura
,
C.
Park
,
J.
Poulose
,
S.
Rauf
,
M.
Sekine
,
T. G.
Smith
,
N.
Stafford
,
T.
Standaert
, and
P. L. G.
Ventzek
,
J. Vac. Sci. Technol. B
42
,
041501
(
2024
).
58.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
,
Rev. Sci. Instrum.
61
,
2401
(
1990
).
59.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.11),
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2023
, https://physics.nist.gov/asd [12 July 2024].
60.
T.
Makabe
and
M.
Nakaya
,
J. Phys. D: Appl. Phys.
20
,
1243
(
1987
).
61.
G.
de Rosny
,
E. R.
Mosburg
,
J. R.
Abelson
,
G.
Devaud
, and
R. C.
Kerns
,
J. Appl. Phys.
54
,
2272
(
1983
).
62.
T.
Makabe
and
Z. L.
Petrović
,
Appl. Surf. Sci.
192
,
88
(
2002
).
63.
J.
Schulze
,
Z.
Donkó
,
A.
Derzsi
,
I.
Korolov
, and
E.
Schuengel
,
Plasma Sources Sci. Technol.
24
,
015019
(
2014
).
64.
M.
Daksha
,
A.
Derzsi
,
Z.
Mujahid
,
D.
Schulenberg
,
B.
Berger
,
Z.
Donkó
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
28
,
034002
(
2019
).
You do not currently have access to this content.