Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons. Additionally, these oils have very low vapor pressures and high viscosities. These physical characteristics present considerable barriers to examining and understanding lubricant ignition chemistry. Therefore, a novel experimental design was devised to create and introduce a lubricant aerosol into a shock-tube facility in a reliable yet relatively simple manner. In this way, the lubricant can be quasi-homogeneously introduced into the shock tube where it will be vaporized by the incident shock wave, and combustion can be observed behind the reflected shock wave. To characterize the technique and anchor it with previously established methods, n-hexadecane was chosen to be tested both with the endwall injection and the well-established, heated shock tube techniques. This comparison showed good agreement, proving the ability of the simple technique to produce reliable ignition delay time (IDT) results. From here, Jet-A was also tested with the current injection technique and compared to a previous generation of the technique to highlight the advantages of the present method. Then, IDT results for mineral oil were collected to establish a baseline IDT set to which off-the-shelf lubricants and additional mixtures can be compared. Finally, IDTs for the off-the-shelf, mineral-based lubricant Mobil DTE 732 were obtained and compared to the baseline as well as the n-hexadecane results. All experiments were conducted near atmospheric pressure and for temperatures between 1084 and 1530 K. An analysis of the system estimated the effective stoichiometry to be around ϕ = 1.15. Although no kinetics mechanisms exist for lubrication oils, preliminary model predictions made by modern chemical kinetics mechanisms for an alkane with 16 carbon atoms were then compared to the results to elucidate some of the chemistry this new method will allow the community to probe. This paper establishes the new method as a viable way to study and compare the ignition behavior of lubricating oils and other very low-vapor-pressure fuels in a shock tube.

1.
J. M.
Kuchta
and
R. J.
Cato
,
SAE Transactions
77
(
2
),
1008
1020
(
1968
).
2.
L.
Huang
,
Y.
Wang
,
Z.
Li
,
L.
Zhang
,
Y.
Yin
,
C.
Chen
, and
S.
Ren
,
Energy
229
,
120644
(
2021
).
3.
A.
Krcmar
, “
The true cost of wind turbine fires and protection
” (
Windpower Engineering &
Development, 2020
), https://www.windpowerengineering.com/the-true-cost-of-wind-turbine-fires-and-protection/.
4.
S. P.
Cooper
,
Z. K.
Browne
,
S. A.
Alturaifi
,
O.
Mathieu
, and
E. L.
Petersen
,
J. Eng. Gas Turbines Power
143
(
5
),
051008
(
2021
).
5.
S. P.
Cooper
and
E. L.
Petersen
,
J. Eng Gas Turbines Power
143
(
11
),
111020
(
2021
).
6.
E. L.
Petersen
,
O.
Mathieu
,
J. C.
Thomas
,
S. P.
Cooper
,
D. S.
Teitge
,
R.
Juárez
,
N.
Gutierrez
, and
C. V.
Mashuga
, in
Presented at Turbo Expo: Power for Land, Sea, and Air
,
2021
).
7.
S. P.
Cooper
,
O.
Mathieu
,
I.
Schoegl
, and
E. L.
Petersen
,
Fuel
275
,
118016
(
2020
).
8.
J. W.
Hargis
,
S. P.
Cooper
,
O.
Mathieu
,
B.
Guo
, and
E. L.
Petersen
,
Combust. Flame
226
,
490
504
(
2021
).
9.
J. W.
Hargis
,
B.
Guo
, and
E. L.
Petersen
,
Rev. Sci. Instrum.
91
,
124102
(
2020
).
10.
J. W.
Hargis
, Ph.D. thesis (
Texas A&M University
,
2020
).
11.
D. F.
Davidson
,
D. R.
Haylett
, and
R. K.
Hanson
,
Combust. Flame
155
(
1–2
),
108
118
(
2008
).
12.
E.
Distaso
,
R.
Amirante
,
G.
Calò
,
P.
De Palma
,
P.
Tamburrano
, and
R.
Reitz
,
Fuel
281
,
118709
(
2020
).
13.
E. L.
Petersen
,
M. J.
Rickard
,
M. W.
Crofton
,
E. D.
Abbey
,
M. J.
Traum
, and
D. M.
Kalitan
,
Meas. Sci. Technol.
16
,
1716
(
2005
).
14.
C.
Aul
, Master’s thesis (
Texas A&M University
,
2009
).
15.
S. P.
Cooper
,
C. M.
Grégoire
,
D. J.
Mohr
,
O.
Mathieu
,
S. A.
Alturaifi
, and
E. L.
Petersen
,
Energies
14
(
20
),
6808
(
2021
).
16.
S. A.
Alturaifi
,
R. L.
Rebagay
,
O.
Mathieu
,
B.
Guo
, and
E. L.
Petersen
,
Energy Fuels
33
(
3
),
2516
2525
(
2019
).
17.
P.
Cadman
, in
Shock Waves @ Marseille II
(
Springer
,
1995
), pp.
179
184
.
18.
T.
Tsuboi
,
T.
Sato
,
Y.
Kaneko
,
T.
Nakajima
,
S.
Ita
, and
K.
Nagaya
,
Symp. (Int.) Combust.
21
(
1
),
473
479
(
1988
).
19.
E.
Petersen
,
S.
Bhosale
,
Z.
El Zahab
,
P.
Mack
, and
S.
Smith
, in
Presented at 33rd AIAA Fluid Dynamics Conference and Exhibit
,
Orlando, Fl
,
2003
.
20.
K. A.
Bhaskaran
and
P.
Roth
,
Prog. Energy Combust. Sci.
28
,
151
192
(
2002
).
21.
O. A.
Kuti
,
S. Y.
Yang
,
N.
Hourani
,
N.
Naser
,
W. L.
Roberts
,
S. H.
Chung
, and
S. M.
Sarathy
,
Fuel
160
,
605
613
(
2015
).
22.
F. C.
Wang
and
L.
Zhang
,
Energy Fuels
21
(
6
),
3477
3483
(
2007
).
23.
T.
Malewicki
,
S.
Gudiyella
, and
K.
Brezinsky
,
Combust. Flame
160
(
1
),
17
30
(
2013
).
24.
K.
Narayanaswamy
,
H.
Pitsch
, and
P.
Pepiot
,
Combust. Flame
165
,
288
309
(
2016
).
25.
E. L.
Petersen
,
Combust. Sci. Technol.
181
(
9
),
1123
1144
(
2009
).
26.
E. S.
Love
and
C. E.
Grigsby
,
NACA Report RM-L54L31
,
1955
.
27.
C. K.
Westbrook
,
W. J.
Pitz
,
O.
Herbinet
,
H. J.
Curran
, and
E. J.
Silke
,
Combust. Flame
156
(
1
),
181
199
(
2009
).
28.
E.
Ranzi
,
A.
Frassoldati
,
A.
Stagni
,
M.
Pelucchi
,
A.
Cuoci
, and
T.
Faravelli
,
Int. J. Chem. Kinet.
46
(
9
),
512
542
(
2014
).
29.
Z.
Hong
,
D. F.
Davidson
,
E. A.
Barbour
, and
R. K.
Hanson
,
Proc. Combust. Inst.
33
(
1
),
309
316
(
2011
).
30.
S. A.
Alturaifi
,
T.
Atherley
,
O.
Mathieu
,
B.
Guo
, and
E. L.
Petersen
,
ASME paper GT2019-90270, Presented at Turbo Expo: Power for Land, Sea, and Air
,
Pheonix, AZ
,
2019
.
You do not currently have access to this content.