Quantum technology exploits fragile quantum electronic phenomena whose energy scales demand ultra-low electron temperature operation. The lack of electron–phonon coupling at cryogenic temperatures makes cooling the electrons down to a few tens of millikelvin a non-trivial task, requiring extensive efforts on thermalization and filtering high-frequency noise. Existing techniques employ bulky and heavy cryogenic metal-powder filters, which prove ineffective at sub-GHz frequency regimes and unsuitable for high-density quantum circuits such as spin qubits. In this work, we realize ultra-compact and lightweight on-chip cryogenic filters based on the attenuation characteristics of finite ground-plane coplanar waveguides. These filters are made of aluminum on sapphire substrates using standard microfabrication techniques. The attenuation characteristics are measured down to a temperature of 500 mK in a dilution refrigerator in a wide frequency range of a few hundred kHz to 8.5 GHz. We find their performance is superior by many orders compared to the existing filtering schemes, especially in the sub-GHz regime, negating the use of any lumped-element low-pass filters. The compact and scalable nature makes these filters a suitable choice for high-density quantum circuits such as quantum processors based on quantum dot spin qubits.

1.
R. J.
Schoelkopf
,
P.
Wahlgren
,
A. A.
Kozhevnikov
,
P.
Delsing
, and
D. E.
Prober
, “
The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer
,”
Science
280
(
5367
),
1238
1242
(
1998
).
2.
P.
Joyez
,
P.
Lafarge
,
A.
Filipe
,
D.
Esteve
, and
M. H.
Devoret
, “
Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor
,”
Phys. Rev. Lett.
72
(
15
),
2458
2461
(
1994
).
3.
D. V.
Averin
and
K. K.
Likharev
, “
Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions
,”
J. Low Temp. Phys.
62
(
3-4
),
345
373
(
1986
).
4.
J. P.
Pekola
,
O.-P.
Saira
,
V. F.
Maisi
,
A.
Kemppinen
,
M.
Möttönen
,
Y. A.
Pashkin
, and
D. V.
Averin
, “
Single-electron current sources: Toward a refined definition of the ampere
,”
Rev. Mod. Phys.
85
(
4
),
1421
1472
(
2013
).
5.
W. G.
Van Der Wiel
,
S.
De Franceschi
,
J. M.
Elzerman
,
T.
Fujisawa
,
S.
Tarucha
, and
L. P.
Kouwenhoven
, “
Electron transport through double quantum dots
,”
Rev. Mod. Phys.
75
(
1
),
1
22
(
2002
).
6.
J. M.
Elzerman
,
R.
Hanson
,
L. H.
Willems van Beveren
,
B.
Witkamp
,
L. M. K.
Vandersypen
, and
L. P.
Kouwenhoven
, “
Single-shot read-out of an individual electron spin in a quantum dot
,”
Nature
430
(
6998
),
431
435
(
2004
).
7.
I.
Jin
,
A.
Amar
, and
F. C.
Wellstood
, “
Distributed microwave damping filters for superconducting quantum interference devices
,”
Appl. Phys. Lett.
70
(
16
),
2186
2188
(
1997
).
8.
D.
Vion
,
P. F.
Orfila
,
P.
Joyez
,
D.
Esteve
, and
M. H.
Devoret
, “
Miniature electrical filters for single electron devices
,”
J. Appl. Phys.
77
(
6
),
2519
2524
(
1995
).
9.
D. C.
Glattli
,
P.
Jacques
,
A.
Kumar
,
P.
Pari
, and
L.
Saminadayar
, “
A noise detection scheme with 10 mK noise temperature resolution for semiconductor single electron tunneling devices
,”
J. Appl. Phys.
81
(
11
),
7350
7356
(
1997
).
10.
G.
Tancredi
,
S.
Schmidlin
, and
P. J.
Meeson
, “
Note: Cryogenic coaxial microwave filters
,”
Rev. Sci. Instrum.
85
(
2
),
026104
(
2014
).
11.
H.
Courtois
,
O.
Buisson
,
J.
Chaussy
, and
B.
Pannetier
, “
Miniature low-temperature high-frequency filters for single electronics
,”
Rev. Sci. Instrum.
66
(
6
),
3465
3468
(
1995
).
12.
H.
Le Sueur
and
P.
Joyez
, “
Microfabricated electromagnetic filters for millikelvin experiments
,”
Rev. Sci. Instrum.
77
(
11
),
115102
(
2006
).
13.
L.
Longobardi
,
D. A.
Bennett
,
V.
Patel
,
W.
Chen
, and
J. E.
Lukens
, “
Microstrip filters for measurement and control of superconducting qubits
,”
Rev. Sci. Instrum.
84
(
1
),
014706
(
2013
).
14.
C. P.
Scheller
,
S.
Heizmann
,
K.
Bedner
,
D.
Giss
,
M.
Meschke
,
D. M.
Zumbühl
,
J. D.
Zimmerman
, and
A. C.
Gossard
, “
Silver-epoxy microwave filters and thermalizers for millikelvin experiments
,”
Appl. Phys. Lett.
104
(
21
),
211106
(
2014
).
15.
A. T.
Jones
,
C. P.
Scheller
,
J. R.
Prance
,
Y. B.
Kalyoncu
,
D. M.
Zumbühl
, and
R. P.
Haley
, “
Progress in cooling nanoelectronic devices to ultra-low temperatures
,”
J. Low Temp. Phys.
201
(
5–6
),
772
802
(
2020
).
16.
S.
Krinner
,
S.
Storz
,
P.
Kurpiers
,
P.
Magnard
,
J.
Heinsoo
,
R.
Keller
,
J.
Lütolf
,
C.
Eichler
, and
A.
Wallraff
, “
Engineering cryogenic setups for 100-qubit scale superconducting circuit systems
,”
EPJ Quantum Technol.
6
(
1
),
2
(
2019
).
17.
K.
Bladh
,
D.
Gunnarsson
,
E.
Hürfeld
,
S.
Devi
,
C.
Kristoffersson
,
B.
Smålander
,
S.
Pehrson
,
T.
Claeson
,
P.
Delsing
, and
M.
Taslakov
, “
Comparison of cryogenic filters for use in single electronics experiments
,”
Rev. Sci. Instrum.
74
(
3
),
1323
1327
(
2003
).
18.
M.
Thalmann
,
H.-F.
Pernau
,
C.
Strunk
,
E.
Scheer
, and
T.
Pietsch
, “
Comparison of cryogenic low-pass filters
,”
Rev. Sci. Instrum.
88
(
11
),
114703
(
2017
).
19.
S. H.
Lee
and
S.-G.
Lee
, “
Investigation of the dependences of the attenuation properties of cryogenic metal-powder filters on the preparation method
,”
J. Korean Phys. Soc.
72
(
8
),
966
971
(
2018
).
20.
A.
Lukashenko
and
A. V.
Ustinov
, “
Improved powder filters for qubit measurements
,”
Rev. Sci. Instrum.
79
(
1
),
014701
(
2008
).
21.
F.
Mueller
,
R. N.
Schouten
,
M.
Brauns
,
T.
Gang
,
W. H.
Lim
,
N. S.
Lai
,
A. S.
Dzurak
,
W. G.
van der Wiel
, and
F. A.
Zwanenburg
, “
Printed circuit board metal powder filters for low electron temperatures
,”
Rev. Sci. Instrum.
84
(
4
),
044706
(
2013
).
22.
F. P.
Milliken
,
J. R.
Rozen
,
G. A.
Keefe
, and
R. H.
Koch
, “
50 Ω characteristic impedance low-pass metal powder filters
,”
Rev. Sci. Instrum.
78
(
2
),
024701
(
2007
).
23.
W. R. E.
Johnston
, “
A study of the distributed RC low-pass and notch filters as feedback networks in active circuit design
,”
Ph.D. thesis
(
McMaster University
,
1972
),
available at
http://hdl.handle.net/11375/18269.
24.
S. H.
Lee
and
S.-G.
Lee
, “
Study on the fabrication of low-pass metal powder filters for use at cryogenic temperatures
,”
J. Korean Phys. Soc.
69
(
3
),
272
276
(
2016
).
25.
M.
Lyatti
,
R.
Roth
,
I.
Gundareva
,
D.
Grützmacher
, and
T.
Schäpers
, “
Impedance-matched coplanar-waveguide metal-powder low-pass filters for cryogenic applications
,”
Rev. Sci. Instrum.
95
(
7
),
074708
(
2024
).
26.
David M
Pozar
,
Microwave Engineering, Fourth Edition
(
Wiley
,
Hoboken, NJ
,
2012
).
27.
I.
Wolff
,
Coplanar Microwave Integrated Circuits
(
Wiley
,
2006
).
28.
G. E.
Ponchak
,
L. P. B.
Katehi
, and
E. M.
Tentzeris
, “
Finite ground coplanar (FGC) waveguide: Its characteristics and advantages for use in RF and wireless communication circuits
,” in
3rd International Wireless Communications Conference (WCC ’98),
San Diego, CA
,
1
3
November 1998
.
29.
G. E.
Ponchak
,
E.
Tentzeris
, and
L. P. B.
Katehi
, “
Coupling between adjacent finite ground coplanar (FGC) waveguides
,”
Adv. Microelectron.
25
(
6
),
24
26
(
1998
).
You do not currently have access to this content.