We introduce a novel control mode for Scanning Tunneling Microscope (STM) that leverages di/dz feedback. By superimposing a high-frequency sinusoidal modulation on the control signal, we extract the amplitude of the resulting tunneling current to obtain a di/dz measurement as the tip is scanned over the surface. A feedback control loop is then closed to maintain a constant di/dz, enhancing the sensitivity of the tip to subtle surface variations throughout a scan. This approach offers distinct advantages over conventional constant-current imaging. We demonstrate the effectiveness of this technique through high-resolution imaging and lithographic experiments on several Si(100)-2 × 1:H surfaces. Our findings, validated across multiple STM systems and imaging conditions, pave the way for a new paradigm in STM control, imaging, and lithography.

1.
G.
Binning
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
, “
Surface studies by scanning tunneling microscopy
,” in
Scanning Tunneling Microscopy
(
Springer
,
1982
), pp.
31
35
.
2.
J. A.
Stroscio
,
R. M.
Feenstra
, and
A. P.
Fein
, “
Electronic structure of the Si(111)2 × 1 surface by scanning-tunneling microscopy
,”
Phys. Rev. Lett.
57
,
2579
(
1986
).
3.
J. B.
Ballard
,
T. W.
Sisson
,
J. H.
Owen
,
W. R.
Owen
,
E.
Fuchs
,
J.
Alexander
,
J. N.
Randall
, and
J. R.
Von Ehr
, “
Multimode hydrogen depassivation lithography: A method for optimizing atomically precise write times
,”
J. Vac. Sci. Technol. B
31
,
06FC01
(
2013
).
4.
J. W.
Lyding
,
T.-C.
Shen
,
J. S.
Hubacek
,
J. R.
Tucker
, and
G. C.
Abeln
, “
Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope
,”
Appl. Phys. Lett.
64
,
2010
2012
(
1994
).
5.
J. D.
Adams
,
B. W.
Erickson
,
J.
Grossenbacher
,
J.
Brugger
,
A.
Nievergelt
, and
G. E.
Fantner
, “
Harnessing the damping properties of materials for high-speed atomic force microscopy
,”
Nat. Nanotechnol.
11
,
147
151
(
2016
).
6.
P.
Avouris
,
R. E.
Walkup
,
A. R.
Rossi
,
T.-C.
Shen
,
G. C.
Abeln
,
J. R.
Tucker
, and
J. W.
Lyding
, “
STM-induced H atom desorption from Si(100): Isotope effects and site selectivity
,”
Chem. Phys. Lett.
257
,
148
154
(
1996
).
7.
W. C. T.
Lee
,
S. R.
McKibbin
,
D. L.
Thompson
,
K.
Xue
,
G.
Scappucci
,
N.
Bishop
,
G. K.
Celler
,
M. S.
Carroll
, and
M. Y.
Simmons
, “
Lithography and doping in strained Si towards atomically precise device fabrication
,”
Nanotechnology
25
,
145302
(
2014
).
8.
G.
Binnig
and
H.
Rohrer
, “
Scanning tunneling microscopy
,”
IBM J. Res. Dev.
44
,
279
(
2000
).
9.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
, “
7 × 7 reconstruction on Si(111) resolved in real space
,”
Phys. Rev. Lett.
50
,
120
(
1983
).
10.
Y.
Cao
and
X. B.
Chen
, “
A survey of modeling and control issues for piezo-electric actuators
,”
J. Dyn. Syst., Meas.t, Control
137
,
014001
(
2015
).
11.
S.
Blanvillain
,
A.
Voda
,
G.
Besancon
, and
G.
Buche
, “
Subnanometer positioning and drift compensation with tunneling current
,”
IEEE Trans. Control Syst. Technol.
22
,
180
189
(
2014
).
12.
E.
Anguiano
,
A. I.
Oliva
, and
M.
Aguilar
, “
Optimal conditions for imaging in scanning tunneling microscopy: Theory
,”
Rev. Sci. Instrum.
69
,
3867
3874
(
1998
).
13.
A. I.
Oliva
,
E.
Anguiano
,
N.
Denisenko
,
M.
Aguilar
, and
J.
Peña
, “
Analysis of scanning tunneling microscopy feedback system
,”
Rev. Sci. Instrum.
66
,
3196
3203
(
1995
).
14.
A. I.
Oliva
,
M.
Aguilar
,
J. L.
Pena
, and
E.
Anguiano
, “
Experimental determination of the parameters of the feedback system of a scanning tunnelling microscope
,”
Meas. Sci. Technol.
8
,
501
(
1997
).
15.
I.
Ahmad
,
A.
Voda
,
G.
Besançon
, and
G.
Buche
, “
Robust digital control approach for high performance tunneling current measurement system
,”
Control Eng. Practice
20
,
643
653
(
2012
).
16.
N.
Bonnail
,
D.
Tonneau
,
F.
Jandard
,
G.-A.
Capolino
, and
H.
Dallaporta
, “
Variable structure control of a piezoelectric actuator for a scanning tunneling microscope
,”
IEEE Trans. Ind. Electron.
51
,
354
363
(
2004
).
17.
A.
Popescu
,
G.
Besançon
,
A.
Voda
, and
S.
Basrour
, “
Observer-based 3-D control enhancement for topographic imaging—Validation with an STM prototype
,”
IEEE Trans. Control Syst. Technol.
29
,
1075
1086
(
2020
).
18.
G.
Besançon
,
A.
Voda
, and
A.
Popescu
, “
Closed-loop-based observer approach for tunneling current parameter estimation in an experimental STM
,”
Mechatronics
83
,
102743
(
2022
).
19.
F.
Tajaddodianfar
,
A.
Fowler
,
E.
Fuchs
,
J. N.
Randall
, and
S. O. R.
Moheimani
, “
Frequency-domain closed-loop system identification of a scanning tunneling microscope
,” in
ASPE Spring Topical Meeting Precision Mechatronic System Design and Control
(
Massachusetts Institute of Technology
,
2016
), pp.
54
57
.
20.
F.
Tajaddodianfar
,
S. O. R.
Moheimani
,
J. H. G.
Owen
, and
J. N.
Randall
, “
On the effect of local barrier height in scanning tunneling microscopy: Measurement methods and control implications
,”
Rev. Sci. Instrum.
89
,
013701
(
2018
).
21.
F.
Tajaddodianfar
,
S. O. R.
Moheimani
, and
J. N.
Randall
, “
Scanning tunneling microscope control: A self-tuning PI controller based on online local barrier height estimation
,”
IEEE Trans. Control Syst. Technol.
27
,
2004
2015
(
2019
).
22.
H.
Alemansour
,
S. O. R.
Moheimani
,
J. H. G.
Owen
,
J. N.
Randall
, and
E.
Fuchs
, “
Ultrafast method for scanning tunneling spectroscopy
,”
J. Vac. Sci. Technol. B
39
,
042802
(
2021
).
23.
B.
Voigtländer
,
Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy
(
Springer
,
2015
).
24.
R.
Mishra
and
S. O. R.
Moheimani
, “
Kalman filter-based estimation of surface conductivity and surface variations in scanning tunneling microscopy
,”
IEEE Trans. Control Syst. Technol.
32
,
1298
(
2024
).
25.
R. J.
Hamers
,
P.
Avouris
, and
F.
Bozso
, “
Imaging chemical-bond formation with the scanning tunneling microscope: NH3 dissociation on Si (001)
,”
Phys. Rev. Lett.
59
,
2071
(
1987
).
26.
G.
Binnig
,
N.
Garcia
,
H.
Rohrer
,
J. M.
Soler
, and
F.
Flores
, “
Electron-metal-surface interaction potential with vacuum tunneling: Observation of the image force
,”
Phys. Rev. B
30
,
4816
(
1984
).
27.
R. M.
Feenstra
, “
Scanning tunneling spectroscopy
,”
Surf. Sci.
299–300
,
965
979
(
1994
).
28.
H.
Alemansour
,
S. O. R.
Moheimani
,
J. H. G.
Owen
,
J. N.
Randall
, and
E.
Fuchs
, “
High signal-to-noise ratio differential conductance spectroscopy
,”
J. Vac. Sci. Technol. B
39
,
010601
(
2021
).
29.
R. J.
Hamers
, “
Atomic-resolution surface spectroscopy with the scanning tunneling microscope
,”
Annu. Rev. Phys. Chem.
40
,
531
559
(
1989
).
30.
J. F.
Jia
,
K.
Inoue
,
Y.
Hasegawa
,
W. S.
Yang
, and
T.
Sakurai
, “
Variation of the local work function at steps on metal surfaces studied with STM
,”
Phys. Rev. B
58
,
1193
(
1998
).
31.
Y.
Maeda
,
M.
Okumura
,
S.
Tsubota
,
M.
Kohyama
, and
M.
Haruta
, “
Local barrier height of Au nanoparticles on a TiO2(1 1 0)-(1×2) surface
,”
Appl. Surf. Sci.
222
,
409
414
(
2004
).
32.
N. D.
Lang
, “
Apparent barrier height in scanning tunneling microscopy
,”
Phys. Rev. B
37
,
010395
(
1988
).
33.
R.
Wiesendanger
,
L.
Eng
,
H. R.
Hidber
,
P.
Oelhafen
,
L.
Rosenthaler
,
U.
Staufer
, and
H.-J.
Güntherodt
, “
Local tunneling barrier height images obtained with the scanning tunneling microscope
,”
Surf. Sci.
189–190
,
24
28
(
1987
).
34.
S. O. R.
Moheimani
and
H.
Alemansour
, “
Methods and devices configured to operated scanning tunneling microscopes using out-of-bandwidth frequency components added to bias voltage and related software
,”
U.S. patent 11,650,222 (16 May 2023
).
35.
A.
Alipour
,
M. B.
Coskun
, and
S. R.
Moheimani
, “
A MEMS nanopositioner with integrated tip for scanning tunneling microscopy
,”
J. Microelectromech. Syst.
30
,
271
280
(
2021
).
36.
A.
Alipour
,
E. L.
Fowler
,
S.
Moheimani
,
J. H.
Owen
, and
J. N.
Randall
, “
Atom-resolved imaging with a silicon tip integrated into an on-chip scanning tunneling microscope
,”
Rev. Sci. Instrum.
95
,
033703
(
2024
).
37.
R.
Mishra
,
N.
Nikooienejad
,
S. O. R.
Moheimani
, and
I. R.
Petersen
, “
Kalman filter based estimation of surface conductivity in STM
,” in
2022 IEEE Conference on Control Technology and Applications (CCTA)
(
IEEE
,
2022
), pp.
950
955
.
38.
U.
Forssell
and
L.
Ljung
, “
Closed-loop identification revisited
,”
Automatica
35
,
1215
1241
(
1999
).
39.
C. L.
Phillips
and
H. T.
Nagle
,
Digital Control System Analysis and Design
(
Prentice Hall Press
,
2007
).
40.
Y. R.
Teo
,
Y.
Yong
, and
A. J.
Fleming
, “
A comparison of scanning methods and the vertical control implications for scanning probe microscopy
,”
Asian J. Control
20
,
1352
1366
(
2018
).
41.
M. A.
Walsh
and
M. C.
Hersam
, “
Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon
,”
Annu. Rev. Phys. Chem.
60
,
193
216
(
2009
).
42.
ScanzTM and ZyVectorTM are trademarked products of Zyvex Labs.
You do not currently have access to this content.