Disruptions in tokamak nuclear reactors, where plasma confinement is suddenly lost, pose a serious threat to the reactor and its components. Classifying discharges as disruptive or non-disruptive is crucial for effective plasma operation and advanced prediction. Traditional disruption identification systems often struggle with noise, variability, and limited adaptability. To address these challenges, we propose an enhanced stacking generalization model called the “Double-Phase Stacking Technique” integrated with Pool-based Active Learning (DPST-PAL) for designing a robust classifier with minimal labor cost. This innovative approach improves classification accuracy and reliability using advanced data analysis techniques. We trained the DPST-PAL model on 162 diagnostic shots from the Aditya dataset, achieving a high accuracy of 98% and an F1-score of 0.99, surpassing conventional methods. Subsequently, the deep 1D convolutional predictor model is implemented and trained using the classified shots obtained from the DPST-PAL model to validate the reliability of the dataset, which is tested on 47 distinct shots. This model accurately predicts the disruptions 7–13 ms in advance with 93.6% accuracy and exhibited no premature alarms or misclassifications for our experimental shots.

1.
B. H.
Guo
,
D. L.
Chen
,
C.
Rea
,
M. Q.
Wu
,
B.
Shen
,
R. S.
Granetz
,
Z.
Zhang
et al, “
Disruption prediction on EAST with different wall conditions based on a multi-scale deep hybrid neural network
,”
Nucl. Fusion
63
(
9
),
094001
(
2023
).
2.
B. H.
Guo
,
D. L.
Chen
,
B.
Shen
,
C.
Rea
,
R. S.
Granetz
,
L.
Zeng
,
W. H.
Hu
et al, “
Disruption prediction on EAST tokamak using a deep learning algorithm
,”
Plasma Phys. Controlled Fusion
63
(
11
),
115007
(
2021
).
3.
P.
Sharma
,
S.
Jain
,
V.
Jain
,
S.
Ranjan
,
R.
Manchanda
,
D.
Raju
, and
R. L.
Tanna
, “
A proposed method for disruption classification in tokamak using convolutional neural network
,” in
Towards Extensible and Adaptable Methods in Computing
(
Springer
,
2018
), pp.
179
193
.
4.
A.
Agarwal
,
A.
Mishra
,
P.
Sharma
,
S.
Jain
,
R.
Daniel
,
S.
Ranjan
,
R.
Manchanda
et al, “
Deep sequence to sequence learning-based prediction of major disruptions in ADITYA tokamak
,”
Plasma Phys. Controlled Fusion
63
(
11
),
115004
(
2021
).
5.
J.
Zhu
, “
Data-driven study of major disruption prediction and plasma instabilities across multiple tokamaks
,” Doctoral dissertation (
Massachusetts Institute of Technology
,
2023
).
6.
M.
Priyanka
,
J.
Sangeetha
, and
C.
Jayakumar
, “
A review of traditional and data-driven approaches for disruption prediction in different tokamaks
,” in
E3S Web of Conferences
(
EDP Sciences
,
2024
), Vol.
477
, p.
00039
.
7.
A.
Pau
,
A.
Fanni
,
B.
Cannas
,
G.
Sias
,
M.
Baruzzo
,
S.
Coda
, and
EUROfusion MST1 Team
, “
Advances in the development of DIS_tool and first analysis on TCV disruptions
,” in
44th EPS Conference on Plasma Physics
(
European Physical Society
,
2017
).
8.
A.
Pau
,
B.
Cannas
,
A.
Fanni
,
G.
Sias
,
M.
Baruzzo
,
A.
Murari
,
G.
Pautasso
,
M.
Tsalas
, and
ASDEX Upgrade Team
, “
A tool to support the construction of reliable disruption databases
,”
Fusion Eng. Des.
125
,
139
153
(
2017
).
9.
R.
Joshi
,
J.
Ghosh
,
N.
Kalani
, and
R. L.
Tanna
, “
Assessment of stacked LSTM, bidirectional LSTM, ConvLSTM2D, and auto encoders LSTM time series regression analysis at ADITYA-U tokamak
,”
IEEE Trans. Plasma Sci.
1
7
(published online) (
2024
).
10.
R.
Joshi
,
J.
Ghosh
,
N.
Kalani
,
R. L.
Tanna
, and
ADITYA /ADITYA-U Teams
, “
Conceptual design and preliminary data analysis for classification of plasma disruption event at Aditya-U tokamak
,” in
Artificial Intelligence and Communication Technologies
, edited by
S.
Hiranwal
and
G.
Mathur
(
SCRS
,
2023
), pp.
725
737
.
11.
B.
Cannas
,
F.
Cau
,
A.
Fanni
,
P.
Sonato
,
M. K.
Zedda
, and
JET-EFDA contributors
, “
Automatic disruption classification at JET: Comparison of different pattern recognition techniques
,”
Nucl. Fusion
46
(
7
),
699
(
2006
).
12.
M.
Cacciola
,
A.
Greco
,
F. C.
Morabito
, and
M.
Versaci
, “
Multi class support vector machines for disruption classification in tokamak reactors
,”
Int. J. Intell. Technol.
1
(
4
),
274
280
(
2006
).
13.
B.
Cannas
,
A.
Fanni
,
A.
Murari
,
A.
Pau
,
G.
Sias
, and
JET EFDA Contributors
, “
Automatic disruption classification based on manifold learning for real-time applications on JET
,”
Nucl. Fusion
53
(
9
),
093023
(
2013
).
14.
B.
Cannas
,
P. C.
De Vries
,
A.
Fanni
,
A.
Murari
,
A.
Pau
,
G.
Sias
, and
JET EFDA Contributors
, “
Automatic disruption classification in JET with the ITER-like wall
,”
Plasma Phys. Controlled Fusion
57
(
12
),
125003
(
2015
).
15.
A.
Murari
,
R.
Rossi
,
M.
Lungaroni
,
M.
Baruzzo
, and
M.
Gelfusa
, “
Stacking of predictors for the automatic classification of disruption types to optimize the control logic
,”
Nucl. Fusion
61
(
3
),
036027
(
2021
).
16.
R. M.
Churchill
,
B.
Tobias
,
Y.
Zhu
, and
DIII-D team
, “
Deep convolutional neural networks for multi-scale time-series classification and application to tokamak disruption prediction using raw, high temporal resolution diagnostic data
,”
Phys. Plasmas
27
(
6
),
062510
(
2020
).
17.
E.
Aymerich
,
A.
Fanni
,
G.
Sias
,
S.
Carcangiu
,
B.
Cannas
,
A.
Murari
,
A.
Pau
, and
JET contributors
, “
A statistical approach for the automatic identification of the start of the chain of events leading to the disruptions at JET
,”
Nucl. Fusion
61
(
3
),
036013
(
2021
).
18.
J.
Croonen
,
J.
Amaya
, and
G.
Lapenta
, “
Investigation of machine learning techniques for disruption prediction using JET data
,”
Plasma
6
(
1
),
89
102
(
2023
).
19.
L.
Spolladore
,
R.
Rossi
,
I.
Wyss
,
P.
Gaudio
,
A.
Murari
,
M.
Gelfusa
, and
J. E. T.
Contributors
, “
Detection of MARFEs using visible cameras for disruption prevention
,”
Fusion Eng. Des.
190
,
113507
(
2023
).
20.
J.
Vega
,
S.
Dormido-Canto
,
R.
Castro
,
J. D.
Fernández
,
A.
Murari
, and
J. E. T.
Contributors
, “
Real-time disruption prediction in multi-dimensional spaces leveraging diagnostic information not available at execution time
,”
Nucl. Fusion
64
(
4
),
046010
(
2024
).
21.
R.
Rossi
,
M.
Gelfusa
,
T.
Craciunescu
,
I.
Wyss
, and
J.
Vega
, “
A hybrid physics/data-driven logic to detect, classify, and predict anomalies and disruptions in tokamak plasmas
,”
Nucl. Fusion
64
(
4
),
046017
(
2024
).
22.
A.
Agarwal
,
A.
Mishra
,
P.
Sharma
,
S.
Jain
,
S.
Ranjan
, and
R.
Manchanda
, “
Using LSTM for the prediction of disruption in ADITYA tokamak
,” arXiv:2007.06230 (
2020
).
23.
R. L.
Tanna
,
J.
Ghosh
,
P. K.
Chattopadhyay
,
H.
Raj
,
S.
Patel
,
P.
Dhyani
,
C. N.
Gupta
,
K. A.
Jadeja
,
K. M.
Patel
,
S. B.
Bhatt
,
V. K.
Panchal
,
N. C.
Patel
,
C.
Chavda
,
E. V.
Praveenlal
,
K. S.
Shah
,
M. N.
Makawana
,
S. K.
Jha
,
M. V.
Gopalkrishana
,
K.
Tahiliani
,
D.
Sangwan
,
D.
Raju
,
U.
Nagora
,
S. K.
Pathak
,
P. K.
Atrey
,
S.
Purohit
,
J.
Raval
,
Y. S.
Joisa
,
C. V. S.
Rao
,
M. B.
Chowdhuri
,
S.
Banerjee
,
N.
Ramaiya
,
R.
Manchanda
,
J.
Thomas
,
A.
Kumar
,
K.
Ajay
,
P. K.
Sharma
,
S. V.
Kulkarni
,
K.
Sathyanarayana
,
B. K.
Shukla
,
A.
Das
,
R.
Jha
,
Y. C.
Saxena
,
A.
Sen
,
P. K.
Kaw
, and
D.
Bora
, “
Overview of recent experimental results from the Aditya tokamak
,”
Nucl. Fusion
57
,
102008
(
2017
).
24.
A.
Abdulhafedh
, “
Comparison between common statistical modeling techniques used in research, including: Discriminant analysis vs logistic regression, ridge regression vs LASSO, and decision tree vs random forest
,”
OALib
09
(
02
),
1
19
(
2022
).
25.
C.
Bentéjac
,
A.
Csörgő
, and
G.
Martínez-Muñoz
, “
A comparative analysis of gradient boosting algorithms
,”
Artif. Intell. Rev.
54
,
1937
1967
(
2021
).
26.
B.
Settles
, Active learning literature survey,
2009
.
27.
M.
Sokolova
and
G.
Lapalme
, “
A systematic analysis of performance measures for classification tasks
,”
Inf. Process. Manage.
45
(
4
),
427
437
(
2009
).
28.
O.
Kramer
and
O.
Kramer
, “
Scikit-learn
,” in
Machine Learning for Evolution Strategies
(
Springer
,
2016
), pp.
45
53
.
29.
F.
Yan
and
Y.
Feng
, “
A two-stage stacked-based heterogeneous ensemble learning for cancer survival prediction
,”
Complex Intell. Syst.
8
(
6
),
4619
4639
(
2022
).
30.
S.
Cui
,
H.
Qiu
,
S.
Wang
, and
Y.
Wang
, “
Two-stage stacking heterogeneous ensemble learning method for gasoline octane number loss prediction
,”
Appl. Soft Comput.
113
,
107989
(
2021
).
You do not currently have access to this content.