Indium seals have been used extensively in ultra-high vacuum and cryogenic applications. Typically, these seals use indium alongside or in place of other metal gaskets in stainless-steel vacuum flanges, with some custom applications for flanges sealing directly with glass (optics or tubes). Here, we present the design and performance of three pressed indium seals (99.99% In) between aluminum and 0.5 in. diameter sapphire optics and aluminum and gold coated Kovar semiconductor packages (TO-66 and TO-39). Test fixtures were designed to mimic those of future tunable diode laser spectrometers for Earth, planetary, and manned spaceflight environmental monitoring applications. Successful high-hermeticity seals [<10−10 atm cc/s (He)] were achieved for all seals formed with sufficient pressure applied to allow indium to flow between mating surfaces. The hermeticity of the seals was maintained after temperature cycling (−10 to +80 °C, 20 cycles), with the optical seals surviving extended duration tests (−55 to +85 °C, per MIL-STD-883). Semiconductor packages (TO-39) subjected to these extended tests saw a moderate increase in leak rate [∼5 × 10−9 atm cc/s (He)]; however, further testing showed that either the glass-metal package seals or the indium were affected (the sample size was too small to draw firm conclusions for future applications). Overall, these results suggest long-term survivability of indium seals for Kovar–aluminum and sapphire–aluminum interfaces [>10 years at 10−10 atm cc/s (He)], where the coefficient of thermal expansion differs by approximately four times.

1.
C. R.
Webster
,
R. D.
May
,
C.
Trimble
,
R.
Chave
, and
J.
Kendall
, “
Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3
,”
Appl. Opt.
33
(
3
),
454
472
(
1994
).
2.
R. D.
May
, “
Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O
,”
J. Geophys. Res.: Atmos.
103
(
D15
),
19161
19172
, (
1998
).
3.
S.
Jeong
,
Y. K.
Hsu
,
A. E.
Andrews
,
L.
Bianco
,
P.
Vaca
,
J. M.
Wilczak
, and
M. L.
Fischer
, “
A multitower measurement network estimate of California’s methane emissions
,”
J. Geophys. Res.: Atmos.
118
(
19
),
11339
11351
, (
2013
).
4.
M.
Sargent
,
D.
Sayres
,
J.
Smith
,
M.
Witinski
,
N.
Allen
,
J.
Demusz
,
M.
Rivero
,
C.
Tuozzolo
, and
J.
Anderson
, “
A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere
,”
Rev. Sci. Instrum.
84
(
7
),
074102
(
2013
).
5.
G.
Moreau
,
C.
Robert
,
V.
Catoire
,
M.
Chartier
,
C.
Camy-Peyret
,
N.
Huret
,
M.
Pirre
,
L.
Pomathiod
, and
G.
Chalumeau
, “
SPIRALE: A multispecies in situ balloonborne instrument with six tunable diode laser spectrometers
,”
Appl. Opt.
44
(
28
),
5972
5989
(
2005
).
6.
C.
Stowasser
,
A.
Farinas
,
J.
Ware
,
D.
Wistisen
,
C.
Rella
,
E.
Wahl
,
E.
Crosson
, and
T.
Blunier
, “
A low-volume cavity ring-down spectrometer for sample-limited applications
,”
Appl. Phys. B
116
,
255
270
(
2014
).
7.
J.
Pohly
,
L.
Christensen
,
M.
Skow
, and
K.
Mansour
, “
Orion LAMS laser absorption spectrometer for human spaceflight–flight unit build and test results
,” in
2020 International Conference on Environmental Systems
,
2020
.
8.
P. D.
Mudgett
,
J. S.
Pilgrim
, and
W. R.
Wood
, “
Laser spectroscopy multi-gas monitor: Results of a year long technology demonstration on ISS
,” in
45th International Conference on Environmental Systems
,
2015
.
9.
J. K.
Hart
and
K.
Martinez
, “
Environmental sensor networks: A revolution in the earth system science?
,”
Earth-Sci. Rev.
78
(
3–4
),
177
191
(
2006
).
10.
E. R.
Delaria
,
J.
Kim
,
H. L.
Fitzmaurice
,
C.
Newman
,
P. J.
Wooldridge
,
K.
Worthington
, and
R. C.
Cohen
, “
The Berkeley environmental air-quality and CO2 network: Field calibrations of sensor temperature dependence and assessment of network scale CO2 accuracy
,”
Atmos. Meas. Tech.
14
(
8
),
5487
5500
(
2021
).
11.
R.
Ramesham
and
R. C.
Kullberg
, “
Review of vacuum packaging and maintenance of MEMS and the use of getters therein
,”
J. Micro/Nanolithogr., MEMS, MOEMS
8
(
3
),
031307
(
2009
).
12.
P. L.
Charvet
,
P.
Nicolas
,
D.
Bloch
, and
B.
Savornin
, “
MEMS packaging reliability assessment: Residual gas analysis of gaseous species trapped inside MEMS cavities
,”
Microelectron. Reliab.
53
(
9–11
),
1622
1627
(
2013
).
13.
K.
Chuntonov
,
A.
Atlas
,
J.
Setina
, and
G.
Douglass
, “
Getters: From classification to materials design
,”
J. Mater. Sci. Chem. Eng.
04
(
03
),
23
(
2016
).
14.
Y.
Ji
,
L.
Feng
,
S.
Guo
,
X.
Peng
,
S.
Chen
,
W.
Li
, and
S.
Wang
, “
A micro-thin-film getter–heater unit for high vacuum capsulation of MEMS devices
,”
AIP Adv.
12
(
1
),
015105
(
2022
).
15.
C.
Ma
,
E.
Shero
,
N.
Verma
,
S.
Gilbert
, and
F.
Shadman
, “
Permeation of moisture and oxygen through polymeric O-rings
,”
J. IEST
38
(
2
),
43
46
(
1995
).
16.
P.
Sturm
,
M.
Leuenberger
,
C.
Sirignano
,
R.
Neubert
,
H.
Meijer
,
R.
Langenfelds
,
W.
Brand
, and
Y.
Tohjima
, “
Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling
,”
J. Geophys. Res.: Atmos.
109
(
D4
),
D04309
, (
2004
).
17.
S.
Sethi
,
P.
Panda
,
R.
Nayak
, and
B.
Ray
, “
Experimental studies on mechanical behavior and microstructural assessment of glass/epoxy composites at low temperatures
,”
J. Reinf. Plast. Compos.
31
(
2
),
77
84
(
2012
).
18.
M.
Huger
,
T.
Ota
,
N.
Tessier-Doyen
,
P.
Michaud
, and
T.
Chotard
, “
Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories
,”
IOP Conf. Ser.: Mater. Sci. Eng.
18
,
222002
(
2011
).
19.
D. E.
Bowles
, “
Effect of microcracks on the thermal expansion of composite laminates
,”
J. Compos. Mater.
18
(
2
),
173
187
(
1984
).
20.
N.
Solmeyer
,
K.
Zhu
, and
D. S.
Weiss
, “
Note: Mounting ultra-high vacuum windows with low stress-induced birefringence
,”
Rev. Sci. Instrum.
82
(
6
),
066105
(
2011
).
21.
A.
Iwamoto
,
T.
Norimatsu
,
M.
Nakai
,
H.
Sakagami
,
S.
Fujioka
,
H.
Shiraga
, and
H.
Azechi
, “
Mechanical design of experimental apparatus for FIREX cryo-target cooling
,”
J. Phys.: Conf. Ser.
717
,
012098
(
2016
).
22.
R.
Turkington
and
R.
Harris-Lowe
, “
Note on the design of simple indium O-ring seals
,”
Rev. Sci. Instrum.
55
(
5
),
803
805
(
1984
).
23.
U.
Hochuli
and
P.
Haldemann
, “
Indium sealing techniques
,”
Rev. Sci. Instrum.
43
(
8
),
1088
1089
(
1972
).
24.
C.
Lim
, “
Indium seals for low-temperature and moderate-pressure applications
,”
Rev. Sci. Instrum.
57
(
1
),
108
114
(
1986
).
25.
R. H.
Haycock
,
S.
Tritchew
, and
P.
Jennison
, “
Compact indium seal for cryogenic optical windows
,”
Proc. SPIE
1340
,
165
175
(
1990
).
26.
S.
Döge
and
J.
Hingerl
, “
A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements
,”
Rev. Sci. Instrum.
89
(
3
),
033903
(
2018
).
27.
K.
Harvey
, “
Improved indium seal for LiF windows of resonance lamps for use at low temperatures
,”
Rev. Sci. Instrum.
60
(
3
),
467
470
(
1989
).
28.
W.
Goree
,
B.
McDowell
, and
T.
Scott
, “
Seals for low temperature high pressure systems
,”
Rev. Sci. Instrum.
36
(
1
),
99
101
(
1965
).
29.
J. O.
Chua
,
R. E.
Terry
, and
A. L.
Ruoff
, “
Dynamic high pressure seal for low temperatures
,”
Rev. Sci. Instrum.
46
(
12
),
1708
1709
(
1975
).
30.
X.
Wang
,
S.
Li
,
Y.
Ju
,
Z.
Lei
,
J.
Liu
,
X.
Ji
,
X.
Tang
, and
Y.
Gou
, “
Performance of cryogenic demountable indium seal at high pressures
,”
Rev. Sci. Instrum.
92
(
9
),
093905
(
2021
).
31.
M.
Stewart
, Jr.
,
G.
Koutroulakis
,
N.
Kalechofsky
, and
V.
Mitrović
, “
A reusable, low-profile, cryogenic wire seal
,”
Cryogenics
50
(
1
),
50
51
(
2010
).
32.
L.
Salerno
,
A.
Spivak
, and
P.
Kittel
, “
Performance of all-metal demountable cryogenic seals at superfluid helium temperatures
,”
Cryogenics
31
(
11
),
993
995
(
1991
).
33.
H.
Greenhouse
,
Hermeticity of Electronic Packages
(
Elsevier
,
2000
).
You do not currently have access to this content.